大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
前面讲解了使用纯numpy实现数值微分和误差反向传播法的手写数字识别,这两种网络都是使用全连接层的结构。全连接层存在什么问题呢?那就是数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的3维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据。实际上,前面提到的使用了MNIST数据集的例子中,输入图像就是1通道、高28像素、长28像素的(1, 28, 28)形状,但却被排成1列,以784个数据的形式输入到最开始的Affine层。
图像是3维形状,这个形状中应该含有重要的空间信息。比如空间上邻近的像素为相似的值、RBG的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3维形状中可能隐藏有值得提取的本质模式。但是,因为全连接层会忽视形状,将全部的输入数据作为相同的神经元(同一维度的神经元)处理,所以无法利用与形状相关的信息。而卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。
在全连接神经网络中,除了权重参数,还存在偏置。CNN中,滤波器的参数就对应之前的权重,并且,CNN中也存在偏置。
三维数据的卷积运算,通道方向上有多个特征图时,会按通道进行输入数据和滤波器的卷积运算,然后将结果相加,从而得到输出。
在上面的图中,输出的是一张特征图,换句话说,就是通道数为1的特征图。那么,如果要在通道方向上也拥有多个卷积运算的输出,就应该使用多个滤波器(权重)。
卷积运算的处理流如下:
卷积运算的处理流,批处理如下:
而池化层是缩小高、长空间上的运算。
上图是Max池化,取出2×2区域中的最大值元素。除了Max池化外,还有Average池化,在图像识别领域,主要使用Max池化。
网络的构成是“Convolution – ReLU – Pooling -Affine – ReLU – Affine – Softmax”,训练代码如下:
import numpy as np
from collections import OrderedDict
import matplotlib.pylab as plt
from dataset.mnist import load_mnist
import pickle
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
""" Parameters ---------- input_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据 filter_h : 滤波器的高 filter_w : 滤波器的长 stride : 步幅 pad : 填充 Returns ------- col : 2维数组 """
N, C, H, W = input_data.shape
out_h = (H + 2*pad - filter_h)//stride + 1
out_w = (W + 2*pad - filter_w)//stride + 1
img = np.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')
col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))
for y in range(filter_h):
y_max = y + stride*out_h
for x in range(filter_w):
x_max = x + stride*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
return col
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
""" Parameters ---------- col : input_shape : 输入数据的形状(例:(10, 1, 28, 28)) filter_h : filter_w stride pad Returns ------- """
N, C, H, W = input_shape
out_h = (H + 2*pad - filter_h)//stride + 1
out_w = (W + 2*pad - filter_w)//stride + 1
col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)
img = np.zeros((N, C, H + 2*pad + stride - 1, W + 2*pad + stride - 1))
for y in range(filter_h):
y_max = y + stride*out_h
for x in range(filter_w):
x_max = x + stride*out_w
img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]
return img[:, :, pad:H + pad, pad:W + pad]
class Relu:
def __init__(self):
self.mask = None
def forward(self, x):
self.mask = (x <= 0)
out = x.copy()
out[self.mask] = 0
return out
def backward(self, dout):
dout[self.mask] = 0
dx = dout
return dx
def softmax(x):
if x.ndim == 2:
x = x.T
x = x - np.max(x, axis=0)
y = np.exp(x) / np.sum(np.exp(x), axis=0)
return y.T
x = x - np.max(x) # 溢出对策
return np.exp(x) / np.sum(np.exp(x))
def cross_entropy_error(y, t):
if y.ndim == 1:
t = t.reshape(1, t.size)
y = y.reshape(1, y.size)
# 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
if t.size == y.size:
t = t.argmax(axis=1)
batch_size = y.shape[0]
return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
class SoftmaxWithLoss:
def __init__(self):
self.loss = None
self.y = None # softmax的输出
self.t = None # 监督数据
def forward(self, x, t):
self.t = t
self.y = softmax(x)
self.loss = cross_entropy_error(self.y, self.t)
return self.loss
def backward(self, dout=1):
batch_size = self.t.shape[0]
if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况
dx = (self.y - self.t) / batch_size
else:
dx = self.y.copy()
dx[np.arange(batch_size), self.t] -= 1
dx = dx / batch_size
return dx
#Affine层的实现
class Affine:
def __init__(self,W,b):
self.W=W
self.b=b
self.x=None
self.dW=None
self.db=None
self.original_x_shape = None
def forward(self,x):
#对于卷积层 需要把数据先展平
self.original_x_shape = x.shape
x=x.reshape(x.shape[0],-1)
self.x=x
out=np.dot(x,self.W)+self.b
return out
def backward(self,dout):
dx=np.dot(dout,self.W.T)
self.dW=np.dot(self.x.T,dout)
self.db=np.sum(dout,axis=0)
# 还原输入数据的形状(对应张量)
dx = dx.reshape(*self.original_x_shape)
return dx
#卷积层的实现
class Convolution:
def __init__(self,W,b,stride=1,pad=0):
self.W=W
self.b=b
self.stride=stride
self.pad=pad
# 中间数据(backward时使用)
self.x = None
self.col = None
self.col_W = None
# 权重和偏置参数的梯度
self.dW = None
self.db = None
def forward(self,x):
#滤波器的数目、通道数、高、宽
FN,C,FH,FW=self.W.shape
#输入数据的数目、通道数、高、宽
N,C,H,W=x.shape
#输出特征图的高、宽
out_h=int(1+(H+2*self.pad-FH)/self.stride)
out_w=int(1+(W+2*self.pad-FW)/self.stride)
#输入数据使用im2col展开
col=im2col(x,FH,FW,self.stride,self.pad)
#滤波器的展开
col_W=self.W.reshape(FN,-1).T
#计算
out=np.dot(col,col_W)+self.b
#变换输出数据的形状
#(N,h,w,C)->(N,c,h,w)
out=out.reshape(N,out_h,out_w,-1).transpose(0,3,1,2)
self.x = x
self.col = col
self.col_W = col_W
return out
def backward(self, dout):
FN, C, FH, FW = self.W.shape
dout = dout.transpose(0,2,3,1).reshape(-1, FN)
self.db = np.sum(dout, axis=0)
self.dW = np.dot(self.col.T, dout)
self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)
dcol = np.dot(dout, self.col_W.T)
dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
return dx
#池化层的实现
class Pooling:
def __init__(self,pool_h,pool_w,stride=1,pad=0):
self.pool_h=pool_h
self.pool_w=pool_w
self.stride=stride
self.pad=pad
self.x = None
self.arg_max = None
def forward(self,x):
#输入数据的数目、通道数、高、宽
N,C,H,W=x.shape
#输出数据的高、宽
out_h=int(1+(H-self.pool_h)/self.stride)
out_w=int(1+(W-self.pool_w)/self.stride)
#展开
col=im2col(x,self.pool_h,self.pool_w,self.stride,self.pad)
col=col.reshape(-1,self.pool_h*self.pool_w)
#最大值
arg_max = np.argmax(col, axis=1)
out=np.max(col,axis=1)
#转换
out=out.reshape(N,out_h,out_w,C).transpose(0,3,1,2)
self.x = x
self.arg_max = arg_max
return out
def backward(self, dout):
dout = dout.transpose(0, 2, 3, 1)
pool_size = self.pool_h * self.pool_w
dmax = np.zeros((dout.size, pool_size))
dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
dmax = dmax.reshape(dout.shape + (pool_size,))
dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)
return dx
#SimpleNet
class SimpleConvNet:
def __init__(self,input_dim=(1,28,28),
conv_param={
'filter_num':30,'filter_size':5,'pad':0,'stride':1},
hidden_size=100,
output_size=10,
weight_init_std=0.01):
filter_num=conv_param['filter_num']#30
filter_size=conv_param['filter_size']#5
filter_pad=conv_param['pad']#0
filter_stride=conv_param['stride']#1
input_size=input_dim[1]#28
conv_output_size=int((1+input_size+2*filter_pad-filter_size)/filter_stride)#24
#pool 默认的是2x2最大值池化 池化层的大小变为卷积层的一半30*12*12=4320
pool_output_size=int(filter_num*(conv_output_size/2)*(conv_output_size/2))
#权重参数的初始化部分 滤波器和偏置
self.params={
}
#(30,1,5,5)
self.params['W1']=np.random.randn(filter_num,input_dim[0],filter_size,filter_size)*weight_init_std
#(30,)
self.params['b1']=np.zeros(filter_num)
#(4320,100)
self.params['W2']=np.random.randn(pool_output_size,hidden_size)*weight_init_std
#(100,)
self.params['b2']=np.zeros(hidden_size)
#(100,10)
self.params['W3']=np.random.randn(hidden_size,output_size)*weight_init_std
#(10,)
self.params['b3']=np.zeros(output_size)
#生成必要的层
self.layers=OrderedDict()
#(N,1,28,28)->(N,30,24,24)
self.layers['Conv1']=Convolution(self.params['W1'],self.params['b1'],conv_param['stride'],conv_param['pad'])
#(N,30,24,24)
self.layers['Relu1']=Relu()
#池化层的步幅大小和池化应用区域大小相等
#(N,30,12,12)
self.layers['Pool1']=Pooling(pool_h=2,pool_w=2,stride=2)
#全连接层
#全连接层内部有个判断 首先是把数据展平
#(N,30,12,12)->(N,4320)->(N,100)
self.layers['Affine1']=Affine(self.params['W2'],self.params['b2'])
#(N,100)
self.layers['Relu2']=Relu()
#(N,100)->(N,10)
self.layers['Affine2']=Affine(self.params['W3'],self.params['b3'])
self.last_layer=SoftmaxWithLoss()
def predict(self,x):
for layer in self.layers.values():
x=layer.forward(x)
return x
def loss(self,x,t):
y=self.predict(x)
return self.last_layer.forward(y,t)
def gradient(self,x,t):
#forward
self.loss(x,t)
#backward
dout=1
dout=self.last_layer.backward(dout)
layers=list(self.layers.values())
layers.reverse()
for layer in layers:
dout=layer.backward(dout)
#梯度
grads={
}
grads['W1']=self.layers['Conv1'].dW
grads['b1']=self.layers['Conv1'].db
grads['W2']=self.layers['Affine1'].dW
grads['b2']=self.layers['Affine1'].db
grads['W3']=self.layers['Affine2'].dW
grads['b3']=self.layers['Affine2'].db
return grads
#计算准确率
def accuracy(self,x,t):
y=self.predict(x)
y=np.argmax(y,axis=1)
if t.ndim !=1:
t=np.argmax(t,axis=1)
accuracy=np.sum(y==t)/float(x.shape[0])
return accuracy
#保存模型参数
def save_params(self, file_name="params.pkl"):
params = {
}
for key, val in self.params.items():
params[key] = val
with open(file_name, 'wb') as f:
pickle.dump(params, f)
#载入模型参数
def load_params(self, file_name="params.pkl"):
with open(file_name, 'rb') as f:
params = pickle.load(f)
for key, val in params.items():
self.params[key] = val
for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
self.layers[key].W = self.params['W' + str(i+1)]
self.layers[key].b = self.params['b' + str(i+1)]
if __name__=='__main__':
(x_train,t_train),(x_test,t_test)=load_mnist(flatten=False)
# 处理花费时间较长的情况下减少数据
x_train, t_train = x_train[:5000], t_train[:5000]
x_test, t_test = x_test[:1000], t_test[:1000]
net=SimpleConvNet(input_dim=(1,28,28),
conv_param = {
'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
hidden_size=100, output_size=10, weight_init_std=0.01)
train_loss_list=[]
#超参数
iter_nums=1000
train_size=x_train.shape[0]
batch_size=100
learning_rate=0.1
#记录准确率
train_acc_list=[]
test_acc_list=[]
#平均每个epoch的重复次数
iter_per_epoch=max(train_size/batch_size,1)
for i in range(iter_nums):
#小批量数据
batch_mask=np.random.choice(train_size,batch_size)
x_batch=x_train[batch_mask]
t_batch=t_train[batch_mask]
#计算梯度
#误差反向传播法 计算很快
grad=net.gradient(x_batch,t_batch)
#更新参数 权重W和偏重b
for key in ['W1','b1','W2','b2']:
net.params[key]-=learning_rate*grad[key]
#记录学习过程
loss=net.loss(x_batch,t_batch)
print('训练次数:'+str(i)+' loss:'+str(loss))
train_loss_list.append(loss)
#计算每个epoch的识别精度
if i%iter_per_epoch==0:
#测试在所有训练数据和测试数据上的准确率
train_acc=net.accuracy(x_train,t_train)
test_acc=net.accuracy(x_test,t_test)
train_acc_list.append(train_acc)
test_acc_list.append(test_acc)
print('train acc:'+str(train_acc)+' test acc:'+str(test_acc))
# 保存参数
net.save_params("params.pkl")
print("模型参数保存成功!")
print(train_acc_list)
print(test_acc_list)
# 绘制图形
markers = {
'train': 'o', 'test': 's'}
x = np.arange(len(train_acc_list))
plt.plot(x, train_acc_list, label='train acc')
plt.plot(x, test_acc_list, label='test acc', linestyle='--')
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()
训练过程如下:
训练的结果如图所示:
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/193842.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...