大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
文章目录
Hsql函数.下(窗口函数、分析函数、增强group)
- 参考链接:https://blog.csdn.net/scgaliguodong123_/article/details/60135385
1.窗口函数与分析函数
- 应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
1.1、窗口函数
-
FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
-
LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值
-
LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
-
LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
1.2、OVER从句
1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列
3、使用PARTITION BY与ORDER BY语句,使用一个或者多个数据类型的分区或者排序列
4、使用窗口规范,窗口规范支持以下格式:
(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
-
当ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.
-
当ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
-
OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。
Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.
Lead 和 Lag 函数. -
over语句还可以独立出来,用window重写,但需要注意的是,如下sort by使用了多个字段,如果用range指定窗口的话会出错,需要用rows来指定窗口,因为range是对列的比较,不支持多列比较
1.3、分析函数
- ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
- RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
- DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位
- CUME_DIST 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例
- PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
- NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。
1.3.1、Hive2.1.0及以后支持Distinct
-
在聚合函数(SUM、COUNT and AVG)中,支持distinct,但是在ORDER by或者窗口限制不支持
count(distinct a) over (partition by c)
1.3.2、Hive2.2.0中在使用ORDER BY和窗口限制是支持distinct
COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
1.3.3、Hive2.1.0及以后支持在OVER从句中支持聚合函数
SELECT rank() OVER (ORDER BY sum(b))
FROM T
GROUP BY a;
1.4、测试练习
- 注意:
结果和ORDER BY相关,默认为升序
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加; - 关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点
其他COUNT、AVG,MIN,MAX,和SUM用法一样。
-- count、sum、min、max、avg
select
user_id,
user_type,
sales,
--默认为从起点到当前行,sales相等的是不分先后顺序的,所以第一个值为2,还有17=5+5+7
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc) AS sales_1,
--从起点到当前行,结果与sales_1不同。像这种情况,就是有序的,即1,2,4,7,12,17,23;
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sales_2,
--当前行+往前3行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS sales_3,
--当前行+往前3行+往后1行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS sales_4,
--当前行+往后所有行
sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS sales_5,
--分组内所有行
SUM(sales) OVER(PARTITION BY user_type) AS sales_6
from
order_detail
order by
user_type,
sales,
user_id;
-
first_value与last_value
select user_id, user_type, ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num, first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user, first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user, last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user, last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_user from order_detail;
-
lead与lag
- lag(field, N)是取前N行的值,lead(field, N)是取后N行的值。
select user_id,device_id,sales, lead(device_id) over (order by sales) as default_after_one_line, lag(device_id) over (order by sales) as default_before_one_line, lead(device_id,2) over (order by sales) as after_two_line, lag(device_id,2,'abc') over (order by sales) as before_two_line from order_detail; | user_id | device_id | default_after_one_line | default_before_one_line | after_two_line | before_two_line | +----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+ | qibaqiu | fds | fdsfagwe | NULL | 543gfd | abc | | liiu | fdsfagwe | 543gfd | fds | f332 | abc | | lisi | 543gfd | f332 | fdsfagwe | dfsadsa323 | fds | | wangshi | f332 | dfsadsa323 | 543gfd | hfd | fdsfagwe | | zhangsa | dfsadsa323 | hfd | f332 | 65ghf | 543gfd | | liwei | hfd | 65ghf | dfsadsa323 | fds | f332 | | wanger | 65ghf | fds | hfd | dsfgg | dfsadsa323 | | qishili | fds | dsfgg | 65ghf | 543gdfsd | hfd | | lilisi | dsfgg | 543gdfsd | fds | NULL | 65ghf | | wutong | 543gdfsd | NULL | dsfgg | NULL | fds | +----------+-------------+-------------------------+--------------------------
-
rank、row_number、dense_rank
- dense_rank和rank都是排名函数,区别在于dense_rank是连续排名,rank遇到排名并列时,下一列排名跳空。
- percent_rank,介于0和1直接的小数形式表示,计算方法是(rank – 1) / (n-1),其中rank为行的序号,n为组的行数
select user_id,user_type,sales, RANK() over (partition by user_type order by sales desc) as r, ROW_NUMBER() over (partition by user_type order by sales desc) as rn, DENSE_RANK() over (partition by user_type order by sales desc) as dr from order_detail; | user_id | user_type | sales | r | rn | dr | +----------+------------+--------+----+-----+-----+--+ | wutong | new | 6 | 1 | 1 | 1 | | qishili | new | 5 | 2 | 2 | 2 | | lilisi | new | 5 | 2 | 3 | 2 | | wanger | new | 3 | 4 | 4 | 3 | | zhangsa | new | 2 | 5 | 5 | 4 | | qibaqiu | new | 1 | 6 | 6 | 5 | | liiu | new | 1 | 6 | 7 | 5 | | liwei | old | 3 | 1 | 1 | 1 | | wangshi | old | 2 | 2 | 2 | 2 | | lisi | old | 1 | 3 | 3 | 3 |
-
ntile
- NTILE这个很强大,以前要获取一定比例的数据是非常困难的,NTILE就是把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。
select user_type,sales, --分组内将数据分成2片 NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2, --分组内将数据分成3片 NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3, --分组内将数据分成4片 NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4, --将所有数据分成4片 NTILE(4) OVER(ORDER BY sales) AS all_nt4 from order_detail order by user_type, sales
-
求取sale前20%的用户ID
select user_id from ( select user_id, NTILE(5) OVER(ORDER BY sales desc) AS nt from order_detail )A where nt=1; --wutong --qishili
-
CUME_DIST、PERCENT_RANK
select user_id,user_type,sales, --没有partition,所有数据均为1组 CUME_DIST() OVER(ORDER BY sales) AS cd1, --按照user_type进行分组 CUME_DIST() OVER(PARTITION BY user_type ORDER BY sales) AS cd2 from order_detail;
select
user_type,sales,
--分组内总行数
SUM(1) OVER(PARTITION BY user_type) AS s,
--RANK值
RANK() OVER(ORDER BY sales) AS r,
PERCENT_RANK() OVER(ORDER BY sales) AS pr,
--分组内
PERCENT_RANK() OVER(PARTITION BY user_type ORDER BY sales) AS prg
from
order_detail;
2.增强的聚合 Cube和Grouping 和Rollup
- 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
2.1、grouping sets
- 在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL,
- 其中的GROUPING__ID,表示结果属于哪一个分组集合
select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
GROUPING SETS(user_type,sales)
ORDER BY
GROUPING__ID;
select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
GROUPING SETS(user_type,sales,(user_type,sales))
ORDER BY
GROUPING__ID;
2.2、CUBE
- 根据GROUP BY的维度的所有组合进行聚合。
select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
WITH CUBE
ORDER BY
GROUPING__ID;
2.3、rollup
- 是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
select
user_type,
sales,
count(user_id) as pv,
GROUPING__ID
from
order_detail
group by
user_type,sales
WITH ROLLUP
ORDER BY
GROUPING__ID;
user_type,sales
WITH CUBE
ORDER BY
GROUPING__ID;
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192894.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...