大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
读取csv文件 data=pd.read_csv(“”)
1、删除全为空值的行或列
data=data.dropna(axis=0,how=’all’) #行
data=data.dropna(axis=1,how=’all’) #列
2、删除含有空值的行或列
data=data.dropna(axis=0,how=’any’) #行
data=data.dropna(axis=1,how=’any’) #列
1.创建带有缺失值的数据库:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index = list(‘abcde’), columns = [‘one’, ‘two’, ‘three’]) # 随机产生5行3列的数据
df.ix[1, :-1] = np.nan # 将指定数据定义为缺失
df.ix[1:-1, 2] = np.nan
print(‘\ndf1’) # 输出df1,然后换行
print(df)
查看数据内容:
2.通常情况下删除行,使用参数axis = 0,删除列的参数axis = 1,通常不会这么做,那样会删除一个变量。
print(‘\ndrop row’)
print(df.dropna(axis = 0))
删除后结果:
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192355.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...