大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
概论:
一维随机变量期望与方差
二维随机变量期望与方差
协方差
1.一维随机变量期望与方差:
公式:
离散型:
E(X)=∑i=1->nXiPi
Y=g(x)
E(Y)=∑i=1->ng(x)Pi
连续型:
E(X)=∫-∞->+∞xf(x)dx
Y=g(x)
E(Y)=∫-∞->+∞g(x)f(x)dx
方差:D(x)=E(x²)-E²(x)
标准差:根号下的方差
常用分布的数学期望和方差:
0~1分布 期望p 方差p(1-p)
二项分布B(n,p) 期望np,方差np(1-p)
泊松分布π(λ) 期望λ 方差λ
几何分布 期望1/p ,方差(1-p)/p²
正态分布 期望μ,方差σ²
均匀分布,期望a+b/2,方差(b-a)²/12
指数分布E(λ)期望1/λ,方差1/λ²
卡方分布,x²(n) 期望n 方差2n
期望E(x)的性质:
E(c)=c
E(ax+c)=aE(x)+c
E(x+-Y)=E(X)+-E(Y)
X和 Y相互独立:
E(XY)=E(X)E(Y)
方差D(X)的性质:
D(c)=0
D(aX+b)=a²D(x)
D(X+-Y)=D(X)+D(Y)+-2Cov(X,Y)
X和Y相互独立:
D(X+-Y)=D(X)+D(Y)
2.二维随机变量的期望与方差:
3.协方差:Cov(X,Y):
D(X+-Y)=D(X)+D(Y)+-2Cov(X,Y)
协方差:
Cov(X,Y)=E(XY)-E(X)E(Y)
相关系数:
ρxY=Cov(X,Y)/X的标准差*Y的标准差
ρxY=0为X与Y不相关
记住:独立一定不相关 ,不相关不一定独立。
协方差的性质:
Cov(X,Y)=Cov(Y,X)
Cov(X,C)=0
CoV(X,X)=D(X)
Cov(ax+b,Y)=aCov(X,Y)
华风扬是一家创业点子分享平台,在这里提供互联网创业项目,以及引流推广、网络营销、实操案例分享,需要网上创业点子那就上华风扬,找项目,学推广就来华风扬!
版权声明:本站部分文章来源或改编自互联网及其他公众平台,主要目的在于分享信息,版权归原作者所有,内容仅供读者参考,如有侵权请联系我们,如若转载,请注明出处:http://www.uxxsn.com/59126.html
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192326.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...