大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
“””
Return object with labels on given axis omitted where alternately any
or all of the data are missing
Parameters
———-
axis : {0 or ‘index‘, 1 or ‘columns‘}, or tuple/list thereof
Pass tuple or list to drop on multiple axes
how : {‘any‘, ‘all‘}
* any : if any NA values are present, drop that label
* all : if all values are NA, drop that label
thresh : int, default None
int value : require that many non-NA values
subset : array-like
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include
inplace : boolean, default False
If True, do operation inplace and return None.
Returns
——-
dropped : DataFrame
Examples
——–
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],
… [np.nan, np.nan, np.nan, 5]],
… columns=list(‘ABCD‘))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
Drop the columns where all elements are nan:
>>> df.dropna(axis=1, how=‘all‘)
A B D
0 NaN 2.0 0
1 3.0 4.0 1
2 NaN NaN 5
Drop the columns where any of the elements is nan
>>> df.dropna(axis=1, how=‘any‘)
D
0 0
1 1
2 5
Drop the rows where all of the elements are nan
(there is no row to drop, so df stays the same):
>>> df.dropna(axis=0, how=‘all‘)
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
Keep only the rows with at least 2 non-na values:
>>> df.dropna(thresh=2)
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
“””
原文:https://www.cnblogs.com/YingxuanZHANG/p/8807395.html
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192239.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...