python中drop用法_python compile函数

python中drop用法_python compile函数pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。python学习网,大量的免费python视频教程,欢迎在线学习!使用dropna使得滤除缺失数据更加得心应手。dropna常用参数:#DataFrame.dropna(axis=0,how=’any’,thresh=None,subset=None,inplace=False)主要…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

ca23945ad14462d57ca503fbeaaec794.png

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。python学习网,大量的免费python视频教程,欢迎在线学习!

使用dropna使得滤除缺失数据更加得心应手。

dropna常用参数:# DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False)

主要的2个参数:

#axis=0:删除包含缺失值(NaN)的行

#axis=1:删除包含缺失值(NaN)的列

# how=‘any’:要有缺失值(NaN)出现删除

# how=‘all’:所有的值都缺失(NaN)才删除

这两个要配合使用才好。

该函数主要用于滤除缺失数据。如果是Series,则返回一个仅含非空数据和索引值的Series,默认丢弃含有缺失值的行。xx.dropna()

对于DataFrame:data.dropna(how = ‘all’) # 传入这个参数后将只丢弃全为缺失值的那些行

data.dropna(axis = 1) # 丢弃有缺失值的列(一般不会这么做,这样会删掉一个特征)

data.dropna(axis=1,how=”all”) # 丢弃全为缺失值的那些列

data.dropna(axis=0,subset = [“Age”, “Sex”]) # 丢弃‘Age’和‘Sex’这两列中有缺失值的行

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192161.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号