K-fold cross-validation_validation

K-fold cross-validation_validationKFold是sklearn中用来做交叉检验的,在sklearn的版本升级中,KFold被挪了地方。在sklearn0.18及以上的版本中,sklearn.cross_validation包被废弃,KFold被挪到了sklearn.model_selection中,本来以为挪就挪了,用法没变就行,结果,,谁用谁知道。cross_validation.KFold与model_selecti…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

KFold是sklearn中用来做交叉检验的,在sklearn 的版本升级中,KFold被挪了地方。

在sklearn 0.18及以上的版本中,sklearn.cross_validation包被废弃,KFold被挪到了sklearn.model_selection中,本来以为挪就挪了,用法没变就行,结果,,谁用谁知道。

cross_validation.KFold与model_selection.KFold的不同用法

cross_validation.KFold做交叉验证

from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold, cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report

def printing_Kfold_scores(x_train_data,y_train_data):
    fold = KFold(len(y_train_data),5,shuffle=False) 
    #将训练集切分成5份,做交叉验证
  
    #正则化惩罚项系数
    c_param_range = [0.01,0.1,1,10,100]

    results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
    results_table['C_parameter'] = c_param_range

    j = 0
    for c_param in c_param_range:
        print('-------------------------------------------')
        print('C parameter: ', c_param)
        print('-------------------------------------------')
        print('')

        recall_accs = []
        #循环进行交叉验证
        for iteration, indices in enumerate(fold,start=1):
            #建立逻辑回归模型,选择正则惩罚类型L1
            lr = LogisticRegression(C = c_param, penalty = 'l1')

            lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())

            y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)

            recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)#计算召回率
            
            recall_accs.append(recall_acc)
            
            print('Iteration ', iteration,': recall score = ', recall_acc)

        results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
        j += 1
        print('')
        print('Mean recall score ', np.mean(recall_accs))
        print('')
    results_table['Mean recall score'] = results_table['Mean recall score'].astype('float64')
    best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
    
    # Finally, we can check which C parameter is the best amongst the chosen.
    print('*********************************************************************************')
    print('Best model to choose from cross validation is with C parameter = ', best_c)
    print('*********************************************************************************')
    
    return best_c

model_selection.KFold做交叉验证

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold, cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report 

def printing_Kfold_scores(x_train_data,y_train_data):
    #将训练集切分成5份,做交叉验证
    kf = KFold(n_splits=5,shuffle=False)
    kf.get_n_splits(x_train_data)

    #正则化惩罚项系数
    c_param_range = [0.01,0.1,1,10,100]

    results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
    results_table['C_parameter'] = c_param_range

    j = 0
    for c_param in c_param_range:
        print('-------------------------------------------')
        print('C parameter: ', c_param)
        print('-------------------------------------------')
        print('')

        recall_accs = []
        #循环进行交叉验证
        for iteration, indices in kf.split(x_train_data):
            
            lr = LogisticRegression(C = c_param, penalty = 'l1',solver='liblinear')
            
            lr.fit(x_train_data.iloc[iteration,:],y_train_data.iloc[iteration,:].values.ravel())

            y_pred_undersample = lr.predict(x_train_data.iloc[indices,:].values)

            recall_acc = recall_score(y_train_data.iloc[indices,:].values,y_pred_undersample)#计算召回率
            recall_accs.append(recall_acc)
            
            print('recall score = ', recall_acc)

        results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
        j += 1
        print('')
        print('Mean recall score ', np.mean(recall_accs))
        print('')
    results_table['Mean recall score'] = results_table['Mean recall score'].astype('float64')
    best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
    
    # Finally, we can check which C parameter is the best amongst the chosen.
    print('*********************************************************************************')
    print('Best model to choose from cross validation is with C parameter = ', best_c)
    print('*********************************************************************************')
    
    return best_c

在新版中,将数据切分需要两行代码:kf = KFold(n_splits=5,shuffle=False)  、 kf.get_n_splits(x_train_data),用for iteration, indices in kf.split(x_train_data):取出,看到iteration和indices装的是两段index值,iteration装了五分之四,indices装的是五分之一,如下图

K-fold cross-validation_validation

 在旧版本中,将数据切分成n份就是一句代码:fold = KFold(len(y_train_data),5,shuffle=False),并且切分后用:for iteration, indices in enumerate(fold,start=1):,取出的iteration是1、2、3、4、5这几个数,indices是上图中两部分的合集

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/191394.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • MYSQL和SQL的区别

    MYSQL和SQL的区别什么是SQL?SQL是一种用于操作数据库的语言。SQL是用于所有数据库的基本语言。不同数据库之间存在较小的语法更改,但基本的SQL语法基本保持不变。SQL是StructuredQueryLanguage的简短缩写。根据ANSI(美国国家标准协会),SQL是操作关系数据库管理系统的标准语言。SQL用于访问,更新和操作数据库中的数据。它的设计允许管理RDBMS中的数据,例如MYSQL。SQL语言还用于控制数据访问以及数据库模式的创建和修改。什么是MYSQL?MySQL是在90年代中期开发的,是

  • python编译同时存在多个编译环境终端如何切换

    python编译同时存在多个编译环境终端如何切换

    2021年11月10日
  • ubuntu 18.04 EM7345 4G 模块接入点删除「建议收藏」

    ubuntuEM7345创建多个接入点如何删除本人TinkPadT440P笔记本,装了ubuntu18.04,前几天一激动,买了一个M2接口的EM7345,支持联通3G/4G,电信4G,都能正常使用,我一不小心建了许动连接点,本人有洁癖,但又不知道怎么删除,后来找了好几天,找到以下路径,又这方面需求的同学,可以参考一下/etc/NetworkManager/syst…

  • linux中iostat命令_linux运维和网络运维

    linux中iostat命令_linux运维和网络运维Linux系统中的iostat是I/Ostatistics(输入/输出统计)的缩写,iostat工具将对系统的磁盘操作活动进行监视。它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU使用情况。同vmstat一样,iostat也有一个弱点,就是它不能对某个进程进行深入分析,仅对系统的整体情况进行分析。……………

  • springboot+maven 项目 打jar包之后部署并启动方式「建议收藏」

    springboot+maven 项目 打jar包之后部署并启动方式「建议收藏」1、不管如何先clean下清掉之前的,命令:mvnclean。2、然后利用mvnpackage-DskipTests打出jar包。3、利用工具将jar包上传到linux服务器上面对应的位置。4、之前如果部署过的话先用命令ps-ef|grepjava看下进程,然后再利用kill-9把这个进程干掉。5、最后在利用命令nohupjava-jar…

  • hibernate之关于使用连接表实现多对一关联映射

    hibernate之关于使用连接表实现多对一关联映射

    2021年12月16日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号