大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
Gamma校正原理:
假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:
1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。
2. 预补偿 :根据公式 , 求出像素归一化后的 数据以 1 /Gamma为指数的对应值。这一步包含一个 求指数运算。若 Gamma值为 2. 2 , 则 1 /Gamma为 0. 454545 , 对归一化后的 A 值进行预补偿的结果就 是 0. 783203 ^0. 454545 = 0. 894872 。 (当Gamma校正的值大于1时,图像的高光部分被压缩而暗调部分被扩展;当Gamma校正的值小于1时,图像的高光部分被扩展而暗调部分被压缩)
3. 反归一化 :将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 – 0. 5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872 代入上式 , 得到 A 预补偿后对应的像素值为 228 , 这个 228 就是最后送 入显示器的数据。
如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 Gamma校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。
针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围 , 例如 , 0 ~ 255 之间的整数 , 则图像中任何一个像素值只能 是 0 到 255 这 256 个整数中的某一个 ; 在 gamma 值 已知的情况下 ,0 ~ 255 之间的任一整数 , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的 , 并且也落在 0 ~ 255 这个范围内。
如前例 , 已知 Gamma值为 2. 2 , 像素 A 的原始值是 200 , 就可求得 经 Gamma校正后 A 对应的预补偿值为 228 。基于上述原理 , 我们只需为 0 ~ 255 之间的每个整数执行一次预补偿操作 , 将其对应的预补偿值存入一个预先建立的 gamma 校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在 0 ~ 255 之 间的图像进行 gamma 校正。
原文:https://blog.csdn.net/linqianbi/article/details/78617615
def adjust_gamma(image, gamma=1.0):
invGamma = 1.0/gamma
table = []
for i in range(256):
table.append(((i / 255.0) ** invGamma) * 255)
table = np.array(table).astype("uint8")
return cv2.LUT(img_dark, table)
img_brighter = adjust_gamma(img_dark, 2)
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/190767.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...