向量的内积和叉积_点乘和叉乘的区别

向量的内积和叉积_点乘和叉乘的区别向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组;向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。点乘公式对于向量a和向量b:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用


向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组;


向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量


点乘公式


对于向量a和向量b:


                                     向量的内积和叉积_点乘和叉乘的区别                      向量的内积和叉积_点乘和叉乘的区别


a和b的点积公式为:


向量的内积和叉积_点乘和叉乘的区别

要求一维向量a和向量b的行列数相同。


点乘几何意义


点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:


向量的内积和叉积_点乘和叉乘的区别


推导过程如下,首先看一下向量组成:


向量的内积和叉积_点乘和叉乘的区别



定义向量:


向量的内积和叉积_点乘和叉乘的区别


根据三角形余弦定理有:


向量的内积和叉积_点乘和叉乘的区别


根据关系c=a-b(a、b、c均为向量)有:


向量的内积和叉积_点乘和叉乘的区别


即:

向量的内积和叉积_点乘和叉乘的区别


向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:


向量的内积和叉积_点乘和叉乘的区别


根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:


     a·b>0    方向基本相同,夹角在0°到90°之间

     a·b=0    正交,相互垂直  

     a·b<0    方向基本相反,夹角在90°到180°之间 


叉乘公式


两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。


对于向量a和向量b:


向量的内积和叉积_点乘和叉乘的区别


a和b的叉乘公式为:


向量的内积和叉积_点乘和叉乘的区别


其中:


向量的内积和叉积_点乘和叉乘的区别


根据i、j、k间关系,有:


向量的内积和叉积_点乘和叉乘的区别


叉乘几何意义


在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。


在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示: 


向量的内积和叉积_点乘和叉乘的区别


在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/189684.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号