game theory博弈论全文翻译_john nash博弈论

game theory博弈论全文翻译_john nash博弈论ProblemDescriptionLittleJohnisplayingveryfunnygamewithhisyoungerbrother.ThereisonebigboxfilledwithM&Msofdifferentcolors.AtfirstJohnhastoeatseveralM&Msofthesamecolor

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

Problem Description
Little John is playing very funny game with his younger brother. There is one big box filled with M&Ms of different colors. At first John has to eat several M&Ms of the same color. Then his opponent has to make a turn. And so on. Please note that each player has to eat at least one M&M during his turn. If John (or his brother) will eat the last M&M from the box he will be considered as a looser and he will have to buy a new candy box.

Both of players are using optimal game strategy. John starts first always. You will be given information about M&Ms and your task is to determine a winner of such a beautiful game.

Input
The first line of input will contain a single integer T – the number of test cases. Next T pairs of lines will describe tests in a following format. The first line of each test will contain an integer N – the amount of different M&M colors in a box. Next line will contain N integers Ai, separated by spaces – amount of M&Ms of i-th color.

Constraints:
1 <= T <= 474,
1 <= N <= 47,
1 <= Ai <= 4747

Output
Output T lines each of them containing information about game winner. Print “John” if John will win the game or “Brother” in other case.
Sample Input
233 5 111
 

 

Sample Output
John
Brother

这一题有点类似于NIM游戏,当符合一定条件的时候,先手可必胜。

这里用到了一个规律。把每一堆的数目进行异或运算(每一堆的数目都是1除外),

最后的结果有两种,为0或不为0,若为0则各堆的二进制位相加不进位以后所得到

的数的各位数一定是一个偶数。我们称结果为0的情况为平衡状态,如果刚开始局

面是一个不平衡状态,即各堆的各位二进制数的和不全为偶数,可判定为先手的必胜残局。

 

举个例子:

下面应用此获胜策略来考虑4-堆的Nim取子游戏。其中各堆的大小分别

791215枚硬币。用二进制表示各数分别为:0111100111001111

于是可得到如下一表:

大小为7的堆  0 1 1 1

大小为9的堆  1 0 0 1

大小为12的堆 1 1 0 0

大小为15的堆 1 1 1 1

 

Nim取子游戏的平衡条件可知,此游戏是一个非平衡状态的取子游戏,因此,

游戏人I在按获胜策略进行取子游戏下将一定能够取得最终的胜利。具体做法

有多种,游戏人I可以从大小为12的堆中取走11枚硬币,使得游戏达到平衡(如下表),

 

大小为7的堆  0 1 1 1

大小为9的堆  1 0 0 1

大小为12的堆 0 0 0 1

大小为15的堆 1 1 1 1

 

之后,无论游戏人II如何取子,游戏人I在取子后仍使得游戏达到平衡。

同样的道理,游戏人I也可以选择大小为9的堆并取走5枚硬币而剩下4枚,

或者,游戏人I从大小为15的堆中取走13枚而留下2枚。

归根结底,Nim取子游戏的关键在于游戏开始时游戏处于何种状

态(平衡或非平衡)和第一个游戏人是否能够按照取子游戏的获胜策略来进行游戏。

 

做这题很容易被英文描述给弄晕,说白了就是这你懂不懂这个游戏,可是

文章却描述的很烂不知道在说什么,做了好些英文题感觉这种题目挺多的,

这种题目指定要靠你什么知识定理什么的,要是之前做过,那么就会容易理解

题意,那么完成这题也就是不需要理会它题目是怎么描述的了……

 

 

下面补充下:

 

§

下面再举一例子:来自北大oj,http://acm.pku.edu.cn/JudgeOnline/problem?id=1704

Description

Georgia and Bob decide to play a self-invented game. They draw a row of
grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N
chessmen on different grids, as shown in the following figure for example:

Georgia and Bob move the chessmen in turn. Every time a player will choose a
chessman, and move it to the left without going over any other chessmen or across the left
edge. The player can freely choose number of steps the chessman moves, with the
constraint that the chessman must be moved at least ONE step and one grid can at
most contains ONE single chessman. The player who cannot make a move loses the game.

Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do
their best in the game, i.e., if one of them knows a way to win the game, he or she will
be able to carry it out.

Given the initial positions of the n chessmen, can you predict who will finally win the game?

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test
cases. Then T cases follow. Each test case contains two lines. The first line consists
of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line
contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial
positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win",
if Georgia will win the game; "Bob will win", if Bob will win the game;
otherwise 'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win
Georgia will win
这题的思想就是把它转换成博弈思想,和上面的吃糖那题类似。这种就是石头有多堆的情况,而下面
讲的取石游戏是一堆的情况。这种类型的题目运用比较广,叫 尼姆博弈……
 
        
        
        
§ 这题我们还是可以通过转化成尼姆博弈来求解。
§ 通过两两配对做成堆
§ 如何分堆
§ 如果偶数个(1.2,34,……n-1n);
§
§ 设各堆中的间隔为a1a2a3……an
§ s=a1^a2&^a3…….^an
§ 判断s是否为0
奇数时则需在左边添加一个与第一个配对,之后一样两两配对

 

巴什博弈:两人取石头游戏

石头总数为n,每人每次最少取1个,最多取m个,最后取完者胜。

§

 
当n%m+1)=s时不等于0.
我第一次取s个。
从现在开始,我只要每次拿的个数与前面另一个人拿的个数和等m+1


其实我们只需要判断n%m+1)是否等于0可知道谁胜谁负。

§
到最后另一个拿的时候肯定是剩tt<m个给我,傻瓜也知道我赢了,嘿嘿!


用个例子来说,假设n=k*m+1+s,那我先把那个S个拿掉,然后让另外一个人拿,

如:

§假设有66个石头,我们每次最多拿6个,则mod667=3

§
第一次:3    1          62
§
第二次:6    2          54
§
第三次:5    4          45
§
第四次:3    2          40
§
第五次:5    6          29
§
第六次:1    5          23
§
第七次:2    6          15
§
第八次:1    5           9
§
第九次:2    6           1
§
第十次:1                 0

 

§
当然我也有输的情况,那就是n=k*m+1)=0时,而另外一个人每次都拿(m+1)减我拿的个数

 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/189553.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 从0到1打造直播 App

    从0到1打造直播 App概要分享内容:互联网内容载体变迁历程,文字——图片/声音——视频——VR/AR——…….。从直播1.0秀场时代(YY),2.0游戏直播(斗鱼、虎牙、熊猫)到如今全民直播3.0泛生活娱乐时代(映客、花椒),国外直播app(Meerkat、Periscope),随着VA/AR/MR提出的沉浸式视听体验,直播4.0时代很快就能到来。在这个全民娱乐的时代,直播已经火得不要不要的,

  • nfc手机与手机数据传输_iphone数据传输已取消

    nfc手机与手机数据传输_iphone数据传输已取消我正在尝试为医院开发Android应用程序.在该系统中,需要使用NFC技术将存储在Android手机中的数据库中的患者信息获取到台式计算机中.无论如何我在哪里可以使用NFCUSB读取设备(ACR122UNFC智能卡读卡器RFID编写器5MifareUSB)将数据从手机传输到我的台式电脑?真实情况是,在医院,当一个人想要获得一些测试结果时,他将到达柜台并将移动设备放置在安装在柜台上的NFC读…

  • DNS多点部署IP Anycast+BGP实战分析

    DNS多点部署IP Anycast+BGP实战分析DNS领域的多点部署大多采用IPAnycast+BGP方式,采用这种方式不需要额外采购设备,部署灵活多样。但像其他所有技术一样,IPAnycast+BGP技术只有在适当的领域和范围内才能发挥它的最大优势。Internet不断发展,上网人群数量增加,多数网站或DNS等服务在使用单节点提供服务的情况下,无论服务器性能还是接入带宽都不足以承载大量的用户服务请求;而在国内运营商网络之间访问缓慢的

  • 八核版9500odin3线刷通刷以及root教程

    八核版9500odin3线刷通刷以及root教程1.先准备好odin3最新版或者汉化版以及通刷包(教程最后提供下载朱雀www.zhuquewl.com)2.跟着我的步骤走,除非你RP不佳,反正我刷机成功了3.教程音量减键+HOME键+开机键出现如下画面:  4.出现如上画面按下音量加键   5.电脑上打开odin3选择你的固件,我放在桌面上(文件放哪随便了),连上手机,端口号能读出[0:COM11],读不出重新连接

  • 小型企业局域网搭建(一)

    小型企业局域网搭建(一)小型企业局域网搭建(一)一、项目介绍1.项目简介2.系统环境二、接入层–基础网络拓扑搭建1.网络拓扑图2.VLAN划分与子网规划3.配置一层交换机三、汇聚层–没啥特别的1.配置二层交换机新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchar

  • mysql索引建多了有什么坏处

    mysql索引建多了有什么坏处

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号