大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
地理加权回归(Geographically Weighted Regression, GWR)经过多年发展,已经具备了多种形式,在R语言中也对应着多个工具包,其中spgwr
是一个开发较早、比较经典的工具包,功能也相对基础。
library(spgwr)
在该包中,运行线性地理加权回归的函数是gwr()
。语法结构如下:
gwr(formula, data = list(), coords,
bandwidth, gweight = gwr.Gauss,
adapt = NULL, hatmatrix = FALSE, fit.points,
longlat = NULL, se.fit = FALSE, weights,
cl = NULL, predictions = FALSE,
fittedGWRobject = NULL, se.fit.CCT = TRUE)
本篇先介绍它的几个主要的参数:
参数 | 含义及格式 |
---|---|
formula | 模型表达式; |
data | 数据源;可以为普通的数据框,也可以为sp格式的矢量对象 |
coords | 坐标信息,当data 参数是普通数据框时,需要提供该参数 |
bandwidth | 带宽 |
gweight | 距离加权函数 |
该包目前的版本号是0.6-34,还不支持sf格式的矢量对象。
数据源
library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
package = "spData"))
模型形式
form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME
带宽
带宽(bandwidth)确定了局部的范围,该包的gwr.sel()
函数提供了两种确定带宽的方法:交叉验证法和AIC信息准则法。语法结构如下:
gwr.sel(formula, data = list(),
coords, adapt = FALSE, gweight = gwr.Gauss,
method = "cv", verbose = TRUE,
longlat = NULL, RMSE = FALSE, weights,
tol = .Machine$double.eps^0.25,
show.error.messages = FALSE)
-
method:可选项有cv(交叉验证)、aic(AIC准则)。
bw <- gwr.sel(formula = form, data = NY8,
gweight = gwr.Gauss, method = "cv")
bw
## [1] 179942.6
formula
、data
、gweight
参数需要与gwr()
函数的对应参数保持一致。
距离加权函数
距离加权函数是一个随距离增加而逐渐衰减的函数,该包提供了4种地理加权函数:gwr.gauss
、gwr.Gauss
(默认)、gwr.bisquare
、gwr.tricube
。
以b
表示带宽,d
表示距离。以d = 100为例:
完整形式
线性回归:
model.lm <- lm(formula = form, data = NY8@data)
summary(model.lm)
##
## Call:
## lm(formula = form, data = NY8@data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7417 -0.3957 -0.0326 0.3353 4.1398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.51728 0.15856 -3.262 0.00124 **
## PEXPOSURE 0.04884 0.03506 1.393 0.16480
## PCTAGE65P 3.95089 0.60550 6.525 3.22e-10 ***
## PCTOWNHOME -0.56004 0.17031 -3.288 0.00114 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6571 on 277 degrees of freedom
## Multiple R-squared: 0.1932, Adjusted R-squared: 0.1844
## F-statistic: 22.1 on 3 and 277 DF, p-value: 7.306e-13
线性地理加权回归:
library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
package = "spData"))
form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME
bw <- gwr.sel(formula = form, data = NY8,
gweight = gwr.Gauss, method = "cv")
model <- gwr(formula = form, data = NY8,
bandwidth = bw, gweight = gwr.Gauss)
model
## Call:
## gwr(formula = form, data = NY8, bandwidth = bw, gweight = gwr.Gauss)
## Kernel function: gwr.Gauss
## Fixed bandwidth: 179942.6
## Summary of GWR coefficient estimates at data points:
## Min. 1st Qu. Median 3rd Qu. Max. Global
## X.Intercept. -0.522172 -0.520740 -0.520154 -0.514439 -0.511092 -0.5173
## PEXPOSURE 0.047176 0.048032 0.049527 0.049722 0.050477 0.0488
## PCTAGE65P 3.911526 3.933832 3.959192 3.962334 3.979552 3.9509
## PCTOWNHOME -0.559358 -0.557968 -0.557682 -0.555498 -0.554563 -0.5600
模型结果的数据结构是list,模型的主要结果在下图红框所示的位置:
以截距为例进行可视化:
library(sf)
NY8_sf <- st_as_sf(NY8)
NY8_sf$Intercept <- model$SDF@data$X.Intercept.
plot(NY8_sf["Intercept"])
参考文献:
https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/spgwr/spgwr.pdf
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/188806.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...