PyTorch建立resnet34和resnet101代码[通俗易懂]

PyTorch建立resnet34和resnet101代码[通俗易懂]model.pyimporttorch.nnasnnimporttorchclassBasicBlock(nn.Module):expansion=1def__init__(self,in_channel,out_channel,stride=1,downsample=None):super(BasicBlock,self).__init__()self.conv1=nn.Conv2d(in_channels=

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

model.py

import torch.nn as nn
import torch
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channel)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channel)
self.downsample = downsample
def forward(self, x):
identity = x
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=1, stride=1, bias=False)  # squeeze channels
self.bn1 = nn.BatchNorm2d(out_channel)
# -----------------------------------------
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
kernel_size=3, stride=stride, bias=False, padding=1)
self.bn2 = nn.BatchNorm2d(out_channel)
# -----------------------------------------
self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
kernel_size=1, stride=1, bias=False)  # unsqueeze channels
self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
super(ResNet, self).__init__()
self.include_top = include_top
self.in_channel = 64
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, blocks_num[0])
self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
if self.include_top:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None
if stride != 1 or self.in_channel != channel * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channel * block.expansion))
layers = []
layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
self.in_channel = channel * block.expansion
for _ in range(1, block_num):
layers.append(block(self.in_channel, channel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.include_top:
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def resnet34(num_classes=1000, include_top=True):
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
def resnet101(num_classes=1000, include_top=True):
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/188326.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Kinect开发笔记之二Kinect for Windows 2.0新功能

    Kinect开发笔记之二Kinect for Windows 2.0新功能

  • IDEA 2020 3.3激活码_通用破解码

    IDEA 2020 3.3激活码_通用破解码,https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • linux卸载命令_centos卸载jdk

    linux卸载命令_centos卸载jdk#1.查看目前通过rpm安装的jdk版本rpm-qa|grepjdkrpm-qa|grepgcj#2.得到的结果如下:jdk-1.7.0_80-fcs.x86_64libgcj-4.4.7-3.el6.x86_64#3.执行如下命令卸载jdkrpm-e–nodepslibgcj-4.4.7-3.el6.x86_64或rpm-e–nodepsjdk-1.7.0_80-fcs.x86_64…

  • tcpdump抓包命令怎么用_linux系统抓包工具

    tcpdump抓包命令怎么用_linux系统抓包工具今天要给大家介绍的一个Unix下的一个网络数据采集分析工具,也就是我们常说的抓包工具。与它功能类似的工具有wireshark,不同的是,wireshark有图形化界面,而tcpdump则只有命令行。由于我本人更习惯使用命令行的方式进行抓包,因此今天先跳过wireshark,直接给大家介绍这个tcpdump神器。这篇文章,我肝了好几天,借助于Linux的man帮助命令,我把tcpdump的用法全部研究了个遍,才形成了本文,不夸张的说,应该可以算是中文里把tcpdump.

    2022年10月14日
  • Java–String、StringBuilder及StringBuffer区别及性能对比

    Java–String、StringBuilder及StringBuffer区别及性能对比【学习背景】主要是想通过OpenJDK提供的JMH工具测试下String、StringBuilder及StringBuffer字符串拼接的效率如何~关于JMH的介绍及具体使用,我的这篇博文中有介绍:Java–☀️面试官:LinkedList真的比ArrayList添加元素快?❤️‍本文通过OpenJDKJMH带你揭开真相《⭐建议收藏⭐》当然,除了主要验证三者的字符串拼接效率之外,还会对三者做一些区别分析及常见面试问题总结,希望加深自己对这三者的认知,分享出来,也希望能帮助到有需要的小伙伴~

  • C语言算法之将十进制数转换成二进制数[通俗易懂]

    C语言算法之将十进制数转换成二进制数[通俗易懂]导语:在C语言中没有将其他进制的数直接输出为二进制数的工具或方法,输出为八进制数可以用%o,输出为十六进制可以用%x,输出为二进制就要我们自行解决了。下面给大家讲述一下如何编程实现将十进制数转换成二进制数。先将源代码展示给大家:#include<stdio.h>voidmain(){//进制转换函数的声明inttransfer(intx)…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号