opencv相机内参标定_opencv分割算法

opencv相机内参标定_opencv分割算法LM算法在相机标定的应用共有三处。(1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参。OpenCV中对应的函数为findExtrinsicCameraParams2。(2)单目标定中,在内外参都不固定的情况下,计算最佳内外参。OpenCV中对应的函数为calibrateCamera2。(3)双目标定中,在左右相机的内外参及左右相机的位姿都不固定的情况下,计算最佳的左右相机的内外参及最佳的…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

LM算法在相机标定的应用共有三处。

(1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参。OpenCV中对应的函数为findExtrinsicCameraParams2。

(2)单目标定中,在内外参都不固定的情况下,计算最佳内外参。OpenCV中对应的函数为calibrateCamera2。

(3)双目标定中,在左右相机的内外参及左右相机的位姿都不固定的情况下,计算最佳的左右相机的内外参及最佳的左右相机的位姿矩阵。OpenCV中对应的函数为stereoCalibrate。

本文文阅读前提是你已经对LM(Levenberg-Marquardt)算法有足够的了解。因为本文主要是分析LM算法在相机标定中应用。

本文的分析是基于OpenCV的源码,所以可参见OpenCV的源码阅读此文。

0变量设置

设标定板上角点数为m,标定过程中拍摄n幅视图(对双目标定而言,左右相机各抓取n幅视图)。

关于相机的成像模型和畸变模型,我这里就不占空间了,详见OpenCV官方文档或相关论文。我用如下函数表示:

opencv相机内参标定_opencv分割算法

其中,(u,v)是像素坐标,(X,Y,Z)是世界坐标,R=(r1, R2, R3)T是旋转外参,T=(T1, T2, T3)T是平移外参,A=(fx, fy, cx, cy)T是投影内参,D=(k1, k2, p1,p2, k3, k4, k5, k6, s1, s2, s3, s4, a, b)T是畸变内参。

纵所周知,(u,v)是存在畸变的(后文称之为畸变坐标),我们用(uu,vv)表示(u,v)对应的非畸变的坐标(后文称之为标准坐标)。我们用findChessboardCorners提取的角点坐标就被当作是标准坐标。

1计算最佳外参

在内参固定的情况下,我们需要计算最佳外参。于是成像模型简化为:

opencv相机内参标定_opencv分割算法

对于m个角点则有如下方程:

opencv相机内参标定_opencv分割算法

其中(Xi, Yi, Zi)是已知项。计算雅可比矩阵如下:

opencv相机内参标定_opencv分割算法

由J可得J和JTJ。

若给定初值(R0, T0)则可得畸变角点序列uv=(u1,v1, u2,v2,…,um,vm)T。若findChessboardCorners获得的标准角点序列为uuvv=(uu1, vv1, uu2, vv2, …, um, vm)T,则误差序列为E=uv-uuvv。于是最终的方程为:

opencv相机内参标定_opencv分割算法

解方程后可得更精确的(R1, T1)=(R0, T0)-σ。

注意:以上可能与其它LM算法介绍有些差异。按大多数LM算法的介绍文档应是E=uuvv-uv, (R1, T1) = (R0, T0) +σ。不过仔细观察会发现最终结果其实一样的。我只不过是为了与OpenCV中源码对应才这样写的。

2计算最佳内外参

在内外参都不固定的情况下,成像模型应为:

opencv相机内参标定_opencv分割算法

与计算最佳外参不同。计算最佳外参是针对一幅视图,优化目标是使此幅视图的重投影误差最小。而计算最佳内外参,是针对多幅视图,优化目标是使所有视图的重投影误差之和最小。每幅视图有各自的外参,但共用相同的内参。所以每幅视图像上的角点仅对内参和各自的外参存在偏导,对其它视图的外参的偏导为0。于是雅可比矩阵为:

opencv相机内参标定_opencv分割算法

其中,Jini和Jexi是第i幅视图对内参和自身外观的雅可比矩阵。Jini是n×18矩阵(因为18个内参所以18列),Jexi是n×6矩阵(因为6个外参所以6列),所以J是(n*n)×(18+6*n)的矩阵。

可算得:

opencv相机内参标定_opencv分割算法

opencv相机内参标定_opencv分割算法

3计算最佳左右相机的内外参及最佳左右相机的位姿矩阵

此步骤中的优化参数是两相机间的位姿矩阵(R, T),两相机的内参(A1, D1, A2, D2)及左两机外参序列(R1i, T1i)。其中左相机的外参(R2i, T2i)=(RR1i, RT1i+T)。于是左相机每幅视图上的角点只对(A1, D1, Ri, Ti)有偏导,对其它参数的偏导为0。而右相机每幅视图上的角点只对(R, T, A2, D2, R1i, T1i)有偏导,对其它参数的偏导为0。其中,对(R, T, R1i, T1i)的偏导来源于对(R2i, T2i)的偏导。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/188197.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 负采样的理解[通俗易懂]

    负采样的理解[通俗易懂]我对负采样理解来自于word2vec算法;比如说 love和me两个单词;使用特殊思维模式;假设整个词汇表只有100个单词;love表示成one-hot向量;me表示成one-hot向量;模型输入为love的one-hot向量;模型输出为me的one-hot向量;假设模型的神经网络结构为100*10*100;输出层100个;输出层中除了me对应位置的1外,其他全是0;称…

  • 庆祝kkkbo出道!

    庆祝kkkbo出道!希望学编程有始有终,不做弱者,不做断者-常思华联兴之日子,多念华联兴之饭菜,忆图思苦,勉励自身。

  • sqlserver 多表联合查询[通俗易懂]

    sqlserver 多表联合查询[通俗易懂]数据库查询时,对单表的查询很难满足需求,通常都需要多表联合查询。多表连接大致分为内连接和外连接。内连接和外连接的区别主要体现在返回数据上,内连接返回的是符合连接条件和查询条件的记录,外连接返回的数据包含了不符合连接条件没有建立关联的记录。 内连接 A表和B表通过id字段建立连接,返回的是A中id和B中fid相等的记录。字段是A和B中字段的全部,也可以挑选…

  • maven install 跳过 测试 test

    maven install 跳过 测试 testmaven install 跳过 测试 test

  • python问题 Traceback (most recent call last)

    python问题 Traceback (most recent call last)python运行问题Traceback(mostrecentcalllast)出现报错traceback(mostrecentcalllast)…………importError:Nomodulenamedlxml解决方案一般是打开cmd执行命令pipinstallxxxx(缺失的包,例如lxml)当然也有例外的,具体可参考下面的问题及其解决…

  • Django(41)详解异步任务框架Celery「建议收藏」

    Django(41)详解异步任务框架Celery「建议收藏」celery介绍Celery是由Python开发、简单、灵活、可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。Celery侧重

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号