线性代数投影矩阵的定义_线性代数a和线性代数b

线性代数投影矩阵的定义_线性代数a和线性代数bAbout投影矩阵  一个矩阵AAA既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。文章目录About投影矩阵一维空间的投影矩阵投影矩阵的多维推广投影的物理意义信号处理中的正交投影技术一维空间的投影矩阵  查看上图,ppp是bbb在aaa上的投影,可以发现,ppp和aaa是同向的,故可以表示为如下形式,其中xxx是标量p=axp=axp=ax  根据eee和ppp正交的条件,可以推导出x=aTbaTax=\frac{a^Tb}{a^Ta}x=aTaaT

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

About 投影矩阵

  一个矩阵 A A A既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。

一维空间的投影矩阵

在这里插入图片描述
  查看上图, p p p b b b a a a上的投影,可以发现, p p p a a a是同向的,故可以表示为如下形式,其中 x x x是标量
p = a x p=ax p=ax
  根据 e e e p p p正交的条件,可以推导出 x = a T b a T a x=\frac{a^Tb}{a^Ta} x=aTaaTb,则
p = a a T b a T a = a a T a T a b = P b p=a\frac{a^Tb}{a^Ta}=\frac{aa^T}{a^Ta}b=Pb p=aaTaaTb=aTaaaTb=Pb P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT
  记 P P P为投影矩阵,说明了向量 b b b a a a上的投影 p p p是一个矩阵作用在 b b b上得到的。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = 1 rank(P)=1 rank(P)=1,由单个向量张开的子空间,秩为1
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影矩阵的多维推广

在这里插入图片描述
  向量 b b b在子空间上的投影是向量 b b b在向量 a a a上投影的推广。即此时向量 a a a变成矩阵 A A A,记 A A A的列空间包含两个向量 a 1 , a 2 a_1,a_2 a1,a2,依旧记向量 b b b A A A空间上的投影为 p p p,则:
p = A x = [ a 1 a 2 ] [ x 1 x 2 ] = a 1 x 1 + a 2 x 2 p=Ax=\begin{bmatrix} a_1&a_2\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=a_1x_1+a_2x_2 p=Ax=[a1a2][x1x2]=a1x1+a2x2
  误差向量 e e e垂直于列空间的平面,故:
{ a 1 T ( b − p ) = 0 a 2 T ( b − p ) = 0 \left\{ \begin{aligned} a_1^T(b-p)=0 \\ a_2^T(b-p)=0 \end{aligned} \right. {
a1T(bp)=0a2T(bp)=0
A T ( b − p ) = 0 A^T(b-p)=0 AT(bp)=0 A T ( b − A x ) = 0 A^T(b-Ax)=0 AT(bAx)=0 A T b = A T A x A^Tb=A^TAx ATb=ATAx x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb
  此时投影向量 p p p的形式为:
p = A x = A ( A T A ) − 1 A T b = P b p=Ax=A(A^TA)^{-1}A^Tb=Pb p=Ax=A(ATA)1ATb=Pb P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT
  这存在一个疑问, A T A A^TA ATA是否可逆?若 A A A各列线性无关则可逆。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = r a n k ( A ) rank(P)=rank(A) rank(P)=rank(A),由 A A A张开,故等秩
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影的物理意义

  向量投影到子空间的物理意义是什么?查看线性方程组 A x = b Ax=b Ax=b
A = [ a 1 a 2 ⋯ a n ] , x = [ x 1 x 2 ⋮ x n ] A=\begin{bmatrix} a_1&a_2&\cdots&a_n\end{bmatrix}, x=\begin{bmatrix} x_1 \\ x_2 \\\vdots\\x_n \end{bmatrix} A=[a1a2an],x=x1x2xn b = a 1 x 1 + a 2 x 2 + ⋯ + a n x n b=a_1x_1+a_2x_2+\cdots+a_nx_n b=a1x1+a2x2++anxn
  上式的物理意义:把 A A A中的列向量看成 A A A的列空间中的基, x x x为坐标,则向量 b b b是否可用 A A A中的基线性表示,若出现以下情况:向量 b b b不在 A A A的列空间中,则上式无解。
  此时,若将 b b b投影至 A A A的子空间,即 p = P b = A ( A T A ) − 1 A T b p=Pb=A(A^TA)^{-1}A^Tb p=Pb=A(ATA)1ATb,求解 A x ^ = p A\hat{x}=p Ax^=p,因为 p p p最接近于 b b b,所以近似解 x ^ \hat{x} x^最接近于 x x x,以上即为最小二乘法的几何解释,数学描述如下:
A x = b Ax=b Ax=b A x ^ = A ( A T A ) − 1 A T b A\hat{x}=A(A^TA)^{-1}A^Tb Ax^=A(ATA)1ATb x ^ = ( A T A ) − 1 A T b \hat{x}=(A^TA)^{-1}A^Tb x^=(ATA)1ATb

信号处理中的正交投影技术

  对于信号处理方向,矩阵论非常重要。
  假设空间由干扰源张成的子空间以及噪声子空间构成,那么如何去除干扰?
1.已知干扰
Q = C + P w I , C = D D H Q=C+P_wI, \quad C=DD^H Q=C+PwI,C=DDH
  其中, D D D代表干扰源, C C C是由干扰源构成的协方差矩阵, P w P_w Pw代表噪声功率。
  若干扰源已知,即 D D D已知,则干扰源可用以下投影矩阵对消,全空间-干扰子空间的投影矩阵。
P = I − D ( D H D ) − 1 D H P=I-D(D^HD)^{-1}D^H P=ID(DHD)1DH P D = I D − D I = 0 PD=ID-DI=0 PD=IDDI=0
  综上可以发现,利用正交投影技术,可以将干扰源去掉。

2.未知干扰
  对协方差矩阵 Q Q Q进行特征值分解,将干扰子空间和噪声子空间区分开。
Q = ∑ l = 1 L λ l e l ( i ) ( e l ( i ) ) H + ∑ l = L + 1 N λ l e l ( n ) ( e l ( n ) ) H Q=\sum_{l=1}^{L}{\lambda_le_{l}^{(i)}(e_{l}^{(i)})^H}+ \sum_{l=L+1}^{N}{\lambda_le_{l}^{(n)}(e_{l}^{(n)})^H} Q=l=1Lλlel(i)(el(i))H+l=L+1Nλlel(n)(el(n))H Q = E ( i ) Λ ( i ) ( E ( i ) ) ( H ) + E ( n ) Λ ( n ) ( E ( n ) ) ( H ) Q=E^{(i)}Λ^{(i)}(E^{(i)})^{(H)}+E^{(n)}Λ^{(n)}(E^{(n)})^{(H)} Q=E(i)Λ(i)(E(i))(H)+E(n)Λ(n)(E(n))(H) Q = Q ( i ) + Q ( n ) Q=Q^{(i)}+Q^{(n)} Q=Q(i)+Q(n)
  因为特征向量相互正交,所以令投影矩阵 P = E ( n ) ( E ( n ) ) ( H ) P=E^{(n)}(E^{(n)})^{(H)} P=E(n)(E(n))(H),此时 P D = 0 PD=0 PD=0,这里的 E ( i ) E^{(i)} E(i)就是由干扰 D D D构成的协方差矩阵,当然,也可以写成标准形式:
P = I − E ( i ) ( ( E ( i ) ) ( H ) E ( i ) ) − 1 ( E ( i ) ) ( H ) P=I-E^{(i)}((E^{(i)})^{(H)}E^{(i)})^{-1}(E^{(i)})^{(H)} P=IE(i)((E(i))(H)E(i))1(E(i))(H)
  因为不知道干扰,所以要对特征值及特征向量进行估计,区分哪些属于干扰子空间,哪些属于噪声子空间。

Ref:
https://www.cnblogs.com/bigmonkey/p/9897047.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/186004.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • PHP加密技术 附源码

    PHP加密技术 附源码

  • shiro安全框架_漏洞利用及攻击框架

    shiro安全框架_漏洞利用及攻击框架一、Shiro漏洞原理ApacheShiro框架提供了记住我的功能(RemeberMe),用户登录成功后会生成经过加密并编码的cookie。cookie的key为RemeberMe,cookie的值是经过对相关信息进行序列化,然后使用aes加密,最后在使用base64编码处理形成的在服务端接收cookie值时,按以下步骤解析:检索RemeberMecookie的值Base64解码使用ACE解密(加密密钥硬编码)进行反序列化操作(未作过滤处理)在调用反序列化的时候未进行任何过滤,导致

  • 逻辑回归(Logistic Regression)详解

    逻辑回归(Logistic Regression)详解逻辑回归也称作logistic回归分析,是一种广义的线性回归分析模型,属于机器学习中的监督学习。其推导过程与计算方式类似于回归的过程,但实际上主要是用来解决二分类问题(也可以解决多分类问题)。通过给定的n组数据(训练集)来训练模型,并在训练结束后对给定的一组或多组数据(测试集)进行分类。其中每一组数据都是由p个指标构成。(1)逻辑回归所处理的数据逻辑回归是用来进行分类的。例如,我们给出一个人的[身高,体重]这两个指标,然后判断这个人是属于”胖“还是”瘦“这一类。对于这个问题,我们可以先测量n个

    2022年10月25日
  • 笑谈.Net的开发境界

    笑谈.Net的开发境界

  • navicat连接mysql时报错1251怎么办

    navicat连接mysql时报错1251怎么办1、新安装的mysql8,使用激活成功教程版的navicat连接的时候一直报错,如图所示:2、网上查找原因发现是mysql8之前的版本中加密规则是mysql_native_password,而在mysql8之后,加密规则是caching_sha2_password。解决问题方法有两种,一种是升级navicat驱动;一种是把mysql用户登录密码加密规则还原成mysql_native_password。由于用的是激活成功教程版的navicat,所以只能用第二种方法解决了。3、首先win.

    2022年10月10日
  • (二)Python的应用领域

    (二)Python的应用领域Python的应用领域主要有如下几个:Web应用开发Python 经常被用于Web开发,尽管目前PHP、JS依然是Web开发的主流语言,但Python上升势头更劲。尤其

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号