用python生成随机数的几种方法「建议收藏」

用python生成随机数的几种方法「建议收藏」今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下。本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。1从给定参数的正态分布中生成随机数当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。

 

1 从给定参数的正态分布中生成随机数

  当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:

import numpy as np


# 定义从正态分布中获取随机数的函数
def get_normal_random_number(loc, scale):
	"""
	:param loc: 正态分布的均值
	:param scale: 正态分布的标准差
	:return:从正态分布中产生的随机数
	"""
	# 正态分布中的随机数生成
	number = np.random.normal(loc=loc, scale=scale)
	# 返回值
	return number


# 主模块
if __name__ == "__main__":
	# 函数调用
	n = get_normal_random_number(loc=2, scale=2)
	# 打印结果
	print(n)
	# 结果:3.275192443463058

2 从给定参数的均匀分布中获取随机数的函数

  考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。

import numpy as np


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 主模块
if __name__ == "__main__":
	# 函数调用
	n = get_uniform_random_number(low=2, high=4)
	# 打印结果
	print(n)
	# 结果:2.4462417140153114

3 按照指定概率生成随机数

  有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。

3.1 按照指定概率从数字列表中随机抽取数字

  假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:

import numpy as np
import random


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
	"""
	:param number_list:数字列表
	:param pro_list:数字对应的概率列表
	:return:按概率从数字列表中抽取的数字
	"""
	# 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1)
	# 累积概率
	cum_pro = 0.0
	# 将可迭代对象打包成元组列表
	for number, number_pro in zip(number_list, pro_list):
		cum_pro += number_pro
		if x < cum_pro:
			# 返回值
			return number


# 主模块
if __name__ == "__main__":
	# 数字列表
	num_list = [1, 2, 3, 4, 5]
	# 对应的概率列表
	pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
	# 函数调用
	n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
	# 打印结果
	print(n)
	# 结果:1

3.2 按照指定概率从区间列表中的某个区间内生成随机数

  给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:

import numpy as np
import random


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
	"""
	:param number_list:数字列表
	:param pro_list:数字对应的概率列表
	:return:按概率从数字列表中抽取的数字
	"""
	# 用均匀分布中的样本值来模拟概率
	x = random.uniform(0, 1)
	# 累积概率
	cum_pro = 0.0
	# 将可迭代对象打包成元组列表
	for number, number_pro in zip(number_list, pro_list):
		cum_pro += number_pro
		if x < cum_pro:
			# 从区间[number. number - 1]上随机抽取一个值
			num = get_uniform_random_number(number, number - 1)
			# 返回值
			return num


# 主模块
if __name__ == "__main__":
	# 数字列表
	num_list = [1, 2, 3, 4, 5]
	# 对应的概率列表
	pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
	# 函数调用
	n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
	# 打印结果
	print(n)
	# 结果:3.49683787011193

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185713.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 均值归一化详解_matlab数据归一化

    均值归一化详解_matlab数据归一化数据归一化[TOC]将所有的数据映射到同一尺度。​首先,为什么需要数据归一化?举个简答的例子。样本间的距离时间所主导,这样在样本1以[1,200]输入到模型中去的时候,由于200可能会直接忽略到1的存在,因此我们需要将数据进行归一化。比如将天数转换为占比1年的比例,200/365=0.5479,100/365=0.2740。一、最值归一化最值归一化(Nor…

    2022年10月11日
  • Oracle获取字符串的最后几位

    Oracle获取字符串的最后几位substr(字符串,-10)Oracle字符串函数substr(字符串,截取开始位置,截取长度)1.如果最后一个截取长度参数为空,则表示从截取开始位置起截到最末2.如果截取开始位置为大于0的数字,则表示从字符串左数几位开始3.如果截取开始位置为小于0的数字,则表示从字符串右数几位开始……

    2022年10月27日
  • java反射的原理,作用

    什么是反射,反射原理Java反射的原理:java类的执行需要经历以下过程,编译:.java文件编译后生成.class字节码文件加载:类加载器负责根据一个类的全限定名来读取此类的二进制字节流到JVM内部,并存储在运行时内存区的方法区,然后将其转换为一个与目标类型对应的java.lang.Class对象实例连接:细分三步验证:格式(class文件规范)语义(final类是否有子类)…

  • Eclipse快捷键大全(转载)

    Eclipse快捷键大全(转载)

  • Java生成XML格式

    Java生成XML格式工具:dom4j-1.6.1.jar相关类importorg.dom4j.Attribute;importorg.dom4j.Document;importorg.dom4j.DocumentException;importorg.dom4j.DocumentHelper;importorg.dom4j.Element;importorg.dom4j.io.SAXRe…

  • TCP和UDP协议的区别_朋友关系

    TCP和UDP协议的区别_朋友关系在解释两者之间的关系之前,我们必须从宏观的角度了解互联网的整个交互模型。因为当了解互联网在大体上是如何运作时,我们才能了解HTTP和TCP存在的意义,包括他们所要解决的问题是。 (此图来自Udacity的网络协议教程)互联网的模型被分为4层,从上至下每一层都依赖其底层协议。换言之,Application(应用层)的协议操作成功的前提是Transport(运输层)的存在。没有运输层就没有应…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号