用python生成随机数的几种方法「建议收藏」

用python生成随机数的几种方法「建议收藏」今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下。本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。1从给定参数的正态分布中生成随机数当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。

 

1 从给定参数的正态分布中生成随机数

  当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:

import numpy as np


# 定义从正态分布中获取随机数的函数
def get_normal_random_number(loc, scale):
	"""
	:param loc: 正态分布的均值
	:param scale: 正态分布的标准差
	:return:从正态分布中产生的随机数
	"""
	# 正态分布中的随机数生成
	number = np.random.normal(loc=loc, scale=scale)
	# 返回值
	return number


# 主模块
if __name__ == "__main__":
	# 函数调用
	n = get_normal_random_number(loc=2, scale=2)
	# 打印结果
	print(n)
	# 结果:3.275192443463058

2 从给定参数的均匀分布中获取随机数的函数

  考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。

import numpy as np


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 主模块
if __name__ == "__main__":
	# 函数调用
	n = get_uniform_random_number(low=2, high=4)
	# 打印结果
	print(n)
	# 结果:2.4462417140153114

3 按照指定概率生成随机数

  有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。

3.1 按照指定概率从数字列表中随机抽取数字

  假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:

import numpy as np
import random


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
	"""
	:param number_list:数字列表
	:param pro_list:数字对应的概率列表
	:return:按概率从数字列表中抽取的数字
	"""
	# 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1)
	# 累积概率
	cum_pro = 0.0
	# 将可迭代对象打包成元组列表
	for number, number_pro in zip(number_list, pro_list):
		cum_pro += number_pro
		if x < cum_pro:
			# 返回值
			return number


# 主模块
if __name__ == "__main__":
	# 数字列表
	num_list = [1, 2, 3, 4, 5]
	# 对应的概率列表
	pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
	# 函数调用
	n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
	# 打印结果
	print(n)
	# 结果:1

3.2 按照指定概率从区间列表中的某个区间内生成随机数

  给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:

import numpy as np
import random


# 定义从均匀分布中获取随机数的函数
def get_uniform_random_number(low, high):
	"""
	:param low: 均匀分布的下界
	:param high: 均匀分布的上界
	:return: 从均匀分布中产生的随机数
	"""
	# 均匀分布的随机数生成
	number = np.random.uniform(low, high)
	# 返回值
	return number


# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数
def get_number_by_pro(number_list, pro_list):
	"""
	:param number_list:数字列表
	:param pro_list:数字对应的概率列表
	:return:按概率从数字列表中抽取的数字
	"""
	# 用均匀分布中的样本值来模拟概率
	x = random.uniform(0, 1)
	# 累积概率
	cum_pro = 0.0
	# 将可迭代对象打包成元组列表
	for number, number_pro in zip(number_list, pro_list):
		cum_pro += number_pro
		if x < cum_pro:
			# 从区间[number. number - 1]上随机抽取一个值
			num = get_uniform_random_number(number, number - 1)
			# 返回值
			return num


# 主模块
if __name__ == "__main__":
	# 数字列表
	num_list = [1, 2, 3, 4, 5]
	# 对应的概率列表
	pr_list = [0.1, 0.3, 0.1, 0.4, 0.1]
	# 函数调用
	n = get_number_by_pro(number_list=num_list, pro_list=pr_list)
	# 打印结果
	print(n)
	# 结果:3.49683787011193

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185713.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • navicat premium15激活码【2021.10最新】

    (navicat premium15激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html08G05E7DZH-eyJsa…

  • Oracle sql调优(网络优化知识点)

    文章目录一、访问数据的方法1、直接访问数据1.1全表扫描1.2ROWID扫描2、访问索引2.1索引唯一扫描2.2索引范围扫描2.3索引全扫描2.4索引快速全扫描2.5索引跳跃式扫描拓展补充本博客介绍一下属于oracle优化器范畴的一些基础知识,访问数据的方法,分为直接访问数据的方法和访问索引的方法两种,然后有了这些基础知识后,可以参考学习我的另外一篇博客:Oracle优化器简介,对…

  • pychram2021 激活码_在线激活

    (pychram2021 激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html1S…

  • webpack(2)webpack核心概念「建议收藏」

    webpack(2)webpack核心概念「建议收藏」前言本质上,webpack是一个用于现代JavaScript应用程序的静态模块打包工具。当webpack处理应用程序时,它会在内部构建一个依赖图(dependencygraph),此

  • Python 安装dlib,以及pycharm导入的问题「建议收藏」

    Python 安装dlib,以及pycharm导入的问题「建议收藏」第一个方法:通过pip在命令窗口安装,cd进入PythonScripts文件夹,然后执行pipinstalldlib-19.6.0-cp36-cp36m-win_amd64.whl(dlib的whl包名字),如果import不成功就用pipinstalldlib==19.6.1一般都能import成功。第二个方法:pycharm点击加号直接搜索到dlib库直接添加,无需再安装cm…

  • WebStorm快捷键以及个人设置[通俗易懂]

    WebStorm快捷键以及个人设置[通俗易懂]WebStorm是JetBrains推出的一款商业的JavaScript开发工具任何一个编辑器都需要保存(ctrl+s),这是所有win平台上编辑类软件的特点,但是webstorm编辑文件右上角是没有那个熟悉的*的。好处:省去了ctrl+s之后,在结合Firefox的vim,基本不动鼠标就可以看到结果页面了。坏处:没有以前的*标识,万一键盘误操作也会被立即存储。任…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号