数据仓库ods层_app数据仓库搭建

数据仓库ods层_app数据仓库搭建8.数据仓库之ODS层搭建

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

数据仓库之ODS层搭建

我们本项目中对数据仓库每层的搭建主要分为两部分,第一部分是确定都有哪些表,第二部分是确定数据装载的方式。

我们在进行ODS层搭建时,需要明确以下几点:

1)ODS层的表结构设计依托于从业务系统同步过来的数据结构。

2)ODS层要保存全部历史数据,故其压缩格式应选择压缩比较高的,此处选择gzip。

3)ODS层表名的命名规范为:ods_表名_单分区增量全量标识(inc/full)。

我们在进行数据同步时,同步到的用户行为日志数据当中是json字符串格式;增量表是使用Maxwell进行同步的,也是json字符串格式;全量表使用的是DataX同步的,同步到的数据是tsv格式的。因此,我们在进行ODS层表结构设计时,需要考虑到这一点。

1.日志表设计

我们一共有两种方案,第一种方案是在建表的时候只有一个字段,一行存放的是一个json字符串,我们获取对应数据时,可以通过get_json_object()函数,从该字符串中取出对应的字段的信息;第二种方案是我们直接构建一张json表,这种表中的字段和json字符串当中的字段一一对应,这样就可以方便我们之后使用数据了。我们最终选择的方案是构建json表

1.1日志表建表语句

我们去官网查看建json表的语法:
在这里插入图片描述

我们结合行为数据中json的格式,最终构建的日志表建表语句如下所示:

DROP TABLE IF EXISTS ods_log_inc;
CREATE EXTERNAL TABLE ods_log_inc
(
    `common`   STRUCT<ar :STRING,ba :STRING,ch :STRING,is_new :STRING,md :STRING,MID :STRING,os :STRING,uid :STRING,vc
                      :STRING> COMMENT '公共信息',
    `page`     STRUCT<during_time :STRING,item :STRING,item_type :STRING,last_page_id :STRING,page_id
                      :STRING,source_type :STRING> COMMENT '页面信息',
    `actions`  ARRAY<STRUCT<action_id:STRING,item:STRING,item_type:STRING,ts:BIGINT>> COMMENT '动作信息',
    `displays` ARRAY<STRUCT<display_type :STRING,item :STRING,item_type :STRING,`order` :STRING,pos_id
                            :STRING>> COMMENT '曝光信息',
    `start`    STRUCT<entry :STRING,loading_time :BIGINT,open_ad_id :BIGINT,open_ad_ms :BIGINT,open_ad_skip_ms
                      :BIGINT> COMMENT '启动信息',
    `err`      STRUCT<error_code:BIGINT,msg:STRING> COMMENT '错误信息',
    `ts`       BIGINT  COMMENT '时间戳'
) COMMENT '活动信息表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_log_inc/';

我们可以看到上述建表语句中没有写压缩格式,但是我们在传输到HDFS上时使用的是gzip压缩格式,这是因为hive可以自动识别出我们的gzip压缩格式。
在这里插入图片描述

如下图所示,我们建表成功:
在这里插入图片描述

1.2日志表装载语句

我们接下来进行日志表装载语句的编写,我们将hdfs上的数据装载到对应日期分区的表当中:

--数据装载
load data inpath '/origin_data/gmall/log/topic_log/2022-05-01' into table ods_log_inc partition(dt='2022-05-01');

但是该条语句只能将2022-05-01日的数据装载进表当中,因此我们需要编写一个每日装载脚本,用于每天装载日志表数据:

(1)在hadoop102的/home/hadoop/bin目录下创建hdfs_to_ods_log.sh

[root@hadoop102 bin]$ vim hdfs_to_ods_log.sh 

(2)我们在该脚本中编写如下内容:

#!/bin/bash

# 定义变量方便修改
APP=gmall

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
   do_date=$1
else
   do_date=`date -d "-1 day" +%F`
fi

echo ================== 日志日期为 $do_date ==================
sql="
load data inpath '/origin_data/$APP/log/topic_log/$do_date' into table ${APP}.ods_log_inc partition(dt='$do_date');
"
hive -e "$sql"

(3)给该脚本增加权限

[root@hadoop102 bin]$ chmod +x hdfs_to_ods_log.sh

(4)我们每天只需要执行该脚本,即可完成日志数据的装载,下图是装载2022/5/1的数据

[root@hadoop102 bin]$ hdfs_to_ods_log.sh 2022-05-01

在这里插入图片描述
在这里插入图片描述

2.业务表设计

我们全量表的设计应当与Mysql业务系统当中对应表的字段保持一致,另外,我们需要设置分区,每天将数据装载到对应的分区当中。

对于增量表的设计,我们首先查看增量表中数据的格式:

在这里插入图片描述

我们可以看到,由于我们使用的是Maxwell进行同步,因此我们同步过来的数据是以json字符串的形式存储的,我们对于增量表,也是建立json表。我们最终留下的字段有type,ts以及data。

2.1活动信息表(全量表)设计

活动信息表的建表语句如下所示:

DROP TABLE IF EXISTS ods_activity_info_full;
CREATE EXTERNAL TABLE ods_activity_info_full
(
    `id`            STRING COMMENT '活动id',
    `activity_name` STRING COMMENT '活动名称',
    `activity_type` STRING COMMENT '活动类型',
    `activity_desc` STRING COMMENT '活动描述',
    `start_time`    STRING COMMENT '开始时间',
    `end_time`      STRING COMMENT '结束时间',
    `create_time`   STRING COMMENT '创建时间'
) COMMENT '活动信息表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_activity_info_full/';

我们将hive表中null值的存储格式设置为’‘空字符串。因为我们使用DataX将数据从mysql导到HDFS上时,DataX会将Mysql当中的空值存储成’’空字符串形式。我们为了保证hive可以正确识别空值,因此我们在此处将Hive的NULL定义为空字符串。

(Hive中默认空值格式:‘\N’,Mysql中默认空值存储格式:null,datax会把null值存为’’)

2.2活动规则表(全量表)设计

DROP TABLE IF EXISTS ods_activity_rule_full;
CREATE EXTERNAL TABLE ods_activity_rule_full
(
    `id`               STRING COMMENT '编号',
    `activity_id`      STRING COMMENT '类型',
    `activity_type`    STRING COMMENT '活动类型',
    `condition_amount` DECIMAL(16, 2) COMMENT '满减金额',
    `condition_num`    BIGINT COMMENT '满减件数',
    `benefit_amount`   DECIMAL(16, 2) COMMENT '优惠金额',
    `benefit_discount` DECIMAL(16, 2) COMMENT '优惠折扣',
    `benefit_level`    STRING COMMENT '优惠级别'
) COMMENT '活动规则表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_activity_rule_full/';

2.3一级品类表(全量表)设计

DROP TABLE IF EXISTS ods_base_category1_full;
CREATE EXTERNAL TABLE ods_base_category1_full
(
    `id`   STRING COMMENT '编号',
    `name` STRING COMMENT '分类名称'
) COMMENT '一级品类表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_category1_full/';

2.4二级品类表(全量表)设计

DROP TABLE IF EXISTS ods_base_category2_full;
CREATE EXTERNAL TABLE ods_base_category2_full
(
    `id`           STRING COMMENT '编号',
    `name`         STRING COMMENT '二级分类名称',
    `category1_id` STRING COMMENT '一级分类编号'
) COMMENT '二级品类表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_category2_full/';

2.5三级品类表(全量表)设计

DROP TABLE IF EXISTS ods_base_category3_full;
CREATE EXTERNAL TABLE ods_base_category3_full
(
    `id`           STRING COMMENT '编号',
    `name`         STRING COMMENT '三级分类名称',
    `category2_id` STRING COMMENT '二级分类编号'
) COMMENT '三级品类表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_category3_full/';

2.6编码字典表(全量表)设计

DROP TABLE IF EXISTS ods_base_dic_full;
CREATE EXTERNAL TABLE ods_base_dic_full
(
    `dic_code`     STRING COMMENT '编号',
    `dic_name`     STRING COMMENT '编码名称',
    `parent_code`  STRING COMMENT '父编号',
    `create_time`  STRING COMMENT '创建日期',
    `operate_time` STRING COMMENT '修改日期'
) COMMENT '编码字典表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_dic_full/';

2.7省份表(全量表)设计

DROP TABLE IF EXISTS ods_base_province_full;
CREATE EXTERNAL TABLE ods_base_province_full
(
    `id`         STRING COMMENT '编号',
    `name`       STRING COMMENT '省份名称',
    `region_id`  STRING COMMENT '地区ID',
    `area_code`  STRING COMMENT '地区编码',
    `iso_code`   STRING COMMENT '旧版ISO-3166-2编码,供可视化使用',
    `iso_3166_2` STRING COMMENT '新版IOS-3166-2编码,供可视化使用'
) COMMENT '省份表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_province_full/';

2.8地区表(全量表)设计

DROP TABLE IF EXISTS ods_base_region_full;
CREATE EXTERNAL TABLE ods_base_region_full
(
    `id`          STRING COMMENT '编号',
    `region_name` STRING COMMENT '地区名称'
) COMMENT '地区表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_region_full/';

2.9品牌表(全量表)设计

DROP TABLE IF EXISTS ods_base_trademark_full;
CREATE EXTERNAL TABLE ods_base_trademark_full
(
    `id`       STRING COMMENT '编号',
    `tm_name`  STRING COMMENT '品牌名称',
    `logo_url` STRING COMMENT '品牌logo的图片路径'
) COMMENT '品牌表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_base_trademark_full/';

2.10购物车表(全量表)设计

DROP TABLE IF EXISTS ods_cart_info_full;
CREATE EXTERNAL TABLE ods_cart_info_full
(
    `id`           STRING COMMENT '编号',
    `user_id`      STRING COMMENT '用户id',
    `sku_id`       STRING COMMENT 'sku_id',
    `cart_price`   DECIMAL(16, 2) COMMENT '放入购物车时价格',
    `sku_num`      BIGINT COMMENT '数量',
    `img_url`      BIGINT COMMENT '商品图片地址',
    `sku_name`     STRING COMMENT 'sku名称 (冗余)',
    `is_checked`   STRING COMMENT '是否被选中',
    `create_time`  STRING COMMENT '创建时间',
    `operate_time` STRING COMMENT '修改时间',
    `is_ordered`   STRING COMMENT '是否已经下单',
    `order_time`   STRING COMMENT '下单时间',
    `source_type`  STRING COMMENT '来源类型',
    `source_id`    STRING COMMENT '来源编号'
) COMMENT '购物车全量表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_cart_info_full/';

2.11优惠券信息表(全量表)设计

DROP TABLE IF EXISTS ods_coupon_info_full;
CREATE EXTERNAL TABLE ods_coupon_info_full
(
    `id`               STRING COMMENT '购物券编号',
    `coupon_name`      STRING COMMENT '购物券名称',
    `coupon_type`      STRING COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
    `condition_amount` DECIMAL(16, 2) COMMENT '满额数',
    `condition_num`    BIGINT COMMENT '满件数',
    `activity_id`      STRING COMMENT '活动编号',
    `benefit_amount`   DECIMAL(16, 2) COMMENT '减金额',
    `benefit_discount` DECIMAL(16, 2) COMMENT '折扣',
    `create_time`      STRING COMMENT '创建时间',
    `range_type`       STRING COMMENT '范围类型 1、商品 2、品类 3、品牌',
    `limit_num`        BIGINT COMMENT '最多领用次数',
    `taken_count`      BIGINT COMMENT '已领用次数',
    `start_time`       STRING COMMENT '开始领取时间',
    `end_time`         STRING COMMENT '结束领取时间',
    `operate_time`     STRING COMMENT '修改时间',
    `expire_time`      STRING COMMENT '过期时间'
) COMMENT '优惠券信息表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_coupon_info_full/';

2.12商品平台属性表(全量表)设计

DROP TABLE IF EXISTS ods_sku_attr_value_full;
CREATE EXTERNAL TABLE ods_sku_attr_value_full
(
    `id`         STRING COMMENT '编号',
    `attr_id`    STRING COMMENT '平台属性ID',
    `value_id`   STRING COMMENT '平台属性值ID',
    `sku_id`     STRING COMMENT '商品ID',
    `attr_name`  STRING COMMENT '平台属性名称',
    `value_name` STRING COMMENT '平台属性值名称'
) COMMENT 'sku平台属性表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_sku_attr_value_full/';

2.13商品表(全量表)设计

DROP TABLE IF EXISTS ods_sku_info_full;
CREATE EXTERNAL TABLE ods_sku_info_full
(
    `id`              STRING COMMENT 'skuId',
    `spu_id`          STRING COMMENT 'spuid',
    `price`           DECIMAL(16, 2) COMMENT '价格',
    `sku_name`        STRING COMMENT '商品名称',
    `sku_desc`        STRING COMMENT '商品描述',
    `weight`          DECIMAL(16, 2) COMMENT '重量',
    `tm_id`           STRING COMMENT '品牌id',
    `category3_id`    STRING COMMENT '品类id',
    `sku_default_igm` STRING COMMENT '商品图片地址',
    `is_sale`         STRING COMMENT '是否在售',
    `create_time`     STRING COMMENT '创建时间'
) COMMENT 'SKU商品表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_sku_info_full/';

2.14商品销售属性值表(全量表)设计

DROP TABLE IF EXISTS ods_sku_sale_attr_value_full;
CREATE EXTERNAL TABLE ods_sku_sale_attr_value_full
(
    `id`                   STRING COMMENT '编号',
    `sku_id`               STRING COMMENT 'sku_id',
    `spu_id`               STRING COMMENT 'spu_id',
    `sale_attr_value_id`   STRING COMMENT '销售属性值id',
    `sale_attr_id`         STRING COMMENT '销售属性id',
    `sale_attr_name`       STRING COMMENT '销售属性名称',
    `sale_attr_value_name` STRING COMMENT '销售属性值名称'
) COMMENT 'sku销售属性名称'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_sku_sale_attr_value_full/';

2.15 SPU表(全量表)设计

DROP TABLE IF EXISTS ods_spu_info_full;
CREATE EXTERNAL TABLE ods_spu_info_full
(
    `id`           STRING COMMENT 'spu_id',
    `spu_name`     STRING COMMENT 'spu名称',
    `description`  STRING COMMENT '描述信息',
    `category3_id` STRING COMMENT '品类id',
    `tm_id`        STRING COMMENT '品牌id'
) COMMENT 'SPU商品表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/warehouse/gmall/ods/ods_spu_info_full/';

2.16购物车表(增量表)

DROP TABLE IF EXISTS ods_cart_info_inc;
CREATE EXTERNAL TABLE ods_cart_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,user_id :STRING,sku_id :STRING,cart_price :DECIMAL(16, 2),sku_num :BIGINT,img_url :STRING,sku_name
                  :STRING,is_checked :STRING,create_time :STRING,operate_time :STRING,is_ordered :STRING,order_time
                  :STRING,source_type :STRING,source_id :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '购物车增量表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_cart_info_inc/';

2.17评论表(增量表)

DROP TABLE IF EXISTS ods_comment_info_inc;
CREATE EXTERNAL TABLE ods_comment_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,user_id :STRING,nick_name :STRING,head_img :STRING,sku_id :STRING,spu_id :STRING,order_id
                  :STRING,appraise :STRING,comment_txt :STRING,create_time :STRING,operate_time :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '评价表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_comment_info_inc/';

2.18优惠券领用表(增量表)

DROP TABLE IF EXISTS ods_coupon_use_inc;
CREATE EXTERNAL TABLE ods_coupon_use_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,coupon_id :STRING,user_id :STRING,order_id :STRING,coupon_status :STRING,get_time :STRING,using_time
                  :STRING,used_time :STRING,expire_time :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '优惠券领用表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_coupon_use_inc/';

2.19收藏表(增量表)

DROP TABLE IF EXISTS ods_favor_info_inc;
CREATE EXTERNAL TABLE ods_favor_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,user_id :STRING,sku_id :STRING,spu_id :STRING,is_cancel :STRING,create_time :STRING,cancel_time
                  :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '收藏表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_favor_info_inc/';

2.20订单明细表(增量表)

DROP TABLE IF EXISTS ods_order_detail_inc;
CREATE EXTERNAL TABLE ods_order_detail_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,order_id :STRING,sku_id :STRING,sku_name :STRING,img_url :STRING,order_price
                  :DECIMAL(16, 2),sku_num :BIGINT,create_time :STRING,source_type :STRING,source_id :STRING,split_total_amount
                  :DECIMAL(16, 2),split_activity_amount :DECIMAL(16, 2),split_coupon_amount
                  :DECIMAL(16, 2)> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '订单明细表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_detail_inc/';

2.21订单明细活动关联表(增量表)

DROP TABLE IF EXISTS ods_order_detail_activity_inc;
CREATE EXTERNAL TABLE ods_order_detail_activity_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,order_id :STRING,order_detail_id :STRING,activity_id :STRING,activity_rule_id :STRING,sku_id
                  :STRING,create_time :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '订单明细活动关联表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_detail_activity_inc/';

2.22订单明细优惠券关联表(增量表)

DROP TABLE IF EXISTS ods_order_detail_coupon_inc;
CREATE EXTERNAL TABLE ods_order_detail_coupon_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,order_id :STRING,order_detail_id :STRING,coupon_id :STRING,coupon_use_id :STRING,sku_id
                  :STRING,create_time :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '订单明细优惠券关联表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_detail_coupon_inc/';

2.23订单表(增量表)

DROP TABLE IF EXISTS ods_order_info_inc;
CREATE EXTERNAL TABLE ods_order_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,consignee :STRING,consignee_tel :STRING,total_amount :DECIMAL(16, 2),order_status :STRING,user_id
                  :STRING,payment_way :STRING,delivery_address :STRING,order_comment :STRING,out_trade_no :STRING,trade_body
                  :STRING,create_time :STRING,operate_time :STRING,expire_time :STRING,process_status :STRING,tracking_no
                  :STRING,parent_order_id :STRING,img_url :STRING,province_id :STRING,activity_reduce_amount
                  :DECIMAL(16, 2),coupon_reduce_amount :DECIMAL(16, 2),original_total_amount :DECIMAL(16, 2),freight_fee
                  :DECIMAL(16, 2),freight_fee_reduce :DECIMAL(16, 2),refundable_time :DECIMAL(16, 2)> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '订单表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_info_inc/';

2.24退单表(增量表)

DROP TABLE IF EXISTS ods_order_refund_info_inc;
CREATE EXTERNAL TABLE ods_order_refund_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,user_id :STRING,order_id :STRING,sku_id :STRING,refund_type :STRING,refund_num :BIGINT,refund_amount
                  :DECIMAL(16, 2),refund_reason_type :STRING,refund_reason_txt :STRING,refund_status :STRING,create_time
                  :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '退单表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_refund_info_inc/';

2.25订单状态流水表(增量表)

DROP TABLE IF EXISTS ods_order_status_log_inc;
CREATE EXTERNAL TABLE ods_order_status_log_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,order_id :STRING,order_status :STRING,operate_time :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '退单表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_order_status_log_inc/';

2.26支付表(增量表)

DROP TABLE IF EXISTS ods_payment_info_inc;
CREATE EXTERNAL TABLE ods_payment_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,out_trade_no :STRING,order_id :STRING,user_id :STRING,payment_type :STRING,trade_no
                  :STRING,total_amount :DECIMAL(16, 2),subject :STRING,payment_status :STRING,create_time :STRING,callback_time
                  :STRING,callback_content :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '支付表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_payment_info_inc/';

2.27退款表(增量表)

DROP TABLE IF EXISTS ods_refund_payment_inc;
CREATE EXTERNAL TABLE ods_refund_payment_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,out_trade_no :STRING,order_id :STRING,sku_id :STRING,payment_type :STRING,trade_no :STRING,total_amount
                  :DECIMAL(16, 2),subject :STRING,refund_status :STRING,create_time :STRING,callback_time :STRING,callback_content
                  :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '退款表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_refund_payment_inc/';

2.28用户表(增量表)

DROP TABLE IF EXISTS ods_user_info_inc;
CREATE EXTERNAL TABLE ods_user_info_inc
(
    `type` STRING COMMENT '变动类型',
    `ts`   BIGINT COMMENT '变动时间',
    `data` STRUCT<id :STRING,login_name :STRING,nick_name :STRING,passwd :STRING,name :STRING,phone_num :STRING,email
                  :STRING,head_img :STRING,user_level :STRING,birthday :STRING,gender :STRING,create_time :STRING,operate_time
                  :STRING,status :STRING> COMMENT '数据',
    `old`  MAP<STRING,STRING> COMMENT '旧值'
) COMMENT '用户表'
    PARTITIONED BY (`dt` STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
    LOCATION '/warehouse/gmall/ods/ods_user_info_inc/';

2.29数据建表语句执行展示

在这里插入图片描述

2.29数据装载脚本设计

由于上述28张表的数据装载逻辑相同,因此我们编写一个脚本来统一进行28张表的数据装载。

(1)在hadoop102的/home/root/bin目录下创建hdfs_to_ods_db.sh

[root@hadoop102 bin]$ vim hdfs_to_ods_db.sh 

(2)脚本的具体内容如下所示:

我们首先判断有没有传参数,第一个参数传的是要进行数据装载的表,可以进行单表数据的装载,也可以使用参数“all“来进行全表数据的装载。第二个参数传的是日期,在项目上线之后,可以不传该参数,会自动设置为该日的前一天日期。

#!/bin/bash

APP=gmall

if [ -n "$2" ] ;then
   do_date=$2
else 
   do_date=`date -d '-1 day' +%F`
fi

load_data(){ 
   
    sql=""
    for i in $*; do
        #判断路径是否存在
        hadoop fs -test -e /origin_data/$APP/db/${i:4}/$do_date
        #路径存在方可装载数据
        if [[ $? = 0 ]]; then
            sql=$sql"load data inpath '/origin_data/$APP/db/${i:4}/$do_date' OVERWRITE into table ${APP}.$i partition(dt='$do_date');"
        fi
    done
    hive -e "$sql"
}

case $1 in
    "ods_activity_info_full")
        load_data "ods_activity_info_full"
    ;;
    "ods_activity_rule_full")
        load_data "ods_activity_rule_full"
    ;;
    "ods_base_category1_full")
        load_data "ods_base_category1_full"
    ;;
    "ods_base_category2_full")
        load_data "ods_base_category2_full"
    ;;
    "ods_base_category3_full")
        load_data "ods_base_category3_full"
    ;;
    "ods_base_dic_full")
        load_data "ods_base_dic_full"
    ;;
    "ods_base_province_full")
        load_data "ods_base_province_full"
    ;;
    "ods_base_region_full")
        load_data "ods_base_region_full"
    ;;
    "ods_base_trademark_full")
        load_data "ods_base_trademark_full"
    ;;
    "ods_cart_info_full")
        load_data "ods_cart_info_full"
    ;;
    "ods_coupon_info_full")
        load_data "ods_coupon_info_full"
    ;;
    "ods_sku_attr_value_full")
        load_data "ods_sku_attr_value_full"
    ;;
    "ods_sku_info_full")
        load_data "ods_sku_info_full"
    ;;
    "ods_sku_sale_attr_value_full")
        load_data "ods_sku_sale_attr_value_full"
    ;;
    "ods_spu_info_full")
        load_data "ods_spu_info_full"
    ;;

    "ods_cart_info_inc")
        load_data "ods_cart_info_inc"
    ;;
    "ods_comment_info_inc")
        load_data "ods_comment_info_inc"
    ;;
    "ods_coupon_use_inc")
        load_data "ods_coupon_use_inc"
    ;;
    "ods_favor_info_inc")
        load_data "ods_favor_info_inc"
    ;;
    "ods_order_detail_inc")
        load_data "ods_order_detail_inc"
    ;;
    "ods_order_detail_activity_inc")
        load_data "ods_order_detail_activity_inc"
    ;;
    "ods_order_detail_coupon_inc")
        load_data "ods_order_detail_coupon_inc"
    ;;
    "ods_order_info_inc")
        load_data "ods_order_info_inc"
    ;;
    "ods_order_refund_info_inc")
        load_data "ods_order_refund_info_inc"
    ;;
    "ods_order_status_log_inc")
        load_data "ods_order_status_log_inc"
    ;;
    "ods_payment_info_inc")
        load_data "ods_payment_info_inc"
    ;;
    "ods_refund_payment_inc")
        load_data "ods_refund_payment_inc"
    ;;
    "ods_user_info_inc")
        load_data "ods_user_info_inc"
    ;;
    "all")
        load_data "ods_activity_info_full" "ods_activity_rule_full" "ods_base_category1_full" "ods_base_category2_full" "ods_base_category3_full" "ods_base_dic_full" "ods_base_province_full" "ods_base_region_full" "ods_base_trademark_full" "ods_cart_info_full" "ods_coupon_info_full" "ods_sku_attr_value_full" "ods_sku_info_full" "ods_sku_sale_attr_value_full" "ods_spu_info_full" "ods_cart_info_inc" "ods_comment_info_inc" "ods_coupon_use_inc" "ods_favor_info_inc" "ods_order_detail_inc" "ods_order_detail_activity_inc" "ods_order_detail_coupon_inc" "ods_order_info_inc" "ods_order_refund_info_inc" "ods_order_status_log_inc" "ods_payment_info_inc" "ods_refund_payment_inc" "ods_user_info_inc"
    ;;
esac

(3)我们增加该脚本的执行权限

[root@hadoop102 bin]$ chmod +x hdfs_to_ods_db.sh

(4)使用该脚本装载2022-05-01的数据

[root@hadoop102 bin]$ hdfs_to_ods_db.sh all 2022-05-01

在这里插入图片描述
最终,我们查看表中是否有装载进入数据:

在这里插入图片描述
我们可以从上图中看出,ODS层数据已经装载成功。

3.ODS层总结

对于ODS层来说,我们每天只需要执行hdfs_to_ods_log.sh 和hdfs_to_ods_db.sh 这两个脚本将采集到HDFS上的原始数据装载到ODS层即可。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185570.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • anaconda3运行ipynb文件_如何打开ipynb文件

    anaconda3运行ipynb文件_如何打开ipynb文件#1、在官网下安装Anaconda3#2、在Anaconda3下打开ipynb文件##(1)在开始菜单栏找到Anaconda3文件夹->单击【JupyterNotebook】##(2)

  • SpringCloud-Alibaba-Sentinel-服务降级-热点限流-服务熔断

    SpringCloud-Alibaba-Sentinel-服务降级-热点限流-服务熔断前言:除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方API等。例如,支付的时候,可能需要远程调用银联提供的API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用熔断策略Sentinel提供

  • sprintf函数的用法linux,sprintf函数用法解析

    sprintf函数的用法linux,sprintf函数用法解析shortsi=-1;sprintf(s,”%04X”,si);产生“FFFFFFFF”,怎么回事?因为spritnf是个变参函数,除了前面两个参数之外,后面的参数都不是类型安全的,函数更没有办法仅仅通过一个“%X”就能得知当初函数调用前参数压栈时被压进来的到底是个4字节的整数还是个2字节的短整数,所以采取了统一4字节的处理方式,导致参数压栈时做了符号扩展,扩展成了32位的整数…

  • MySQL中concat函数

    MySQL中concat函数

  • pycharm如何关闭更新_win7怎么关闭系统更新

    pycharm如何关闭更新_win7怎么关闭系统更新关闭Pycharm2020.5.22自动更新1.为什么要关闭Pycharm自动更新?有的小白喜欢追新,一旦有更新就会想办法升级,但是很多人使用的专业版是D版,升级后就变为评估板了。所以告诉大家怎么关闭更新。2.操作方法(1)进入pycharm,选择”File”(2)选择“Settings”(3)选择“Appearance&Behavior”(4)选择“SystemSettings”(5)选择“Updates”(6)关闭自动更新“Au

  • Java基础入门笔记02——文档注释,JavaDos文件,数据类型,类型转换,变量默认值问题

    Java基础入门笔记02——文档注释,JavaDos文件,数据类型,类型转换,变量默认值问题科普文字maven 约定大于配置maven整合了所有jar包springBoot整合了所有框架IDEA进行优化 百度看下 快捷键2021.11.13文档注释javadoc是Sun公司提供的一个技术,它从程序源代码中抽取类、方法、成员等注释形成一个和源代码配套的API帮助文档。用于解释包或者方法或者类的作用//JavaDoc:文档注释 /** */package com.baidu.www.base;/** * @author tim 作者名 * @versio

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号