hash一致性算法以及应用场景_什么不是算法的基本特性

hash一致性算法以及应用场景_什么不是算法的基本特性最近有小伙伴跑过来问什么是Hash一致性算法,说面试的时候被问到了,因为不了解,所以就没有回答上,问我有没有相应的学习资料推荐,当时上班,没时间回复,晚上回去了就忘了这件事,今天突然看到这个,加班为大家整理一下什么是Hash一致性算法,希望对大家有帮助!文末送书,长按抽奖助手小程序即可参与,祝君好运!经常阅读我文章的小伙伴应该都很熟悉我写文章的套路,上来就是先要问一句为什么?也就是为什么要有Has

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

最近有小伙伴跑过来问什么是Hash一致性算法,说面试的时候被问到了,因为不了解,所以就没有回答上,问我有没有相应的学习资料推荐,当时上班,没时间回复,晚上回去了就忘了这件事,今天突然看到这个,加班为大家整理一下什么是Hash一致性算法,希望对大家有帮助!文末送书,长按抽奖助手小程序即可参与,祝君好运!

经常阅读我文章的小伙伴应该都很熟悉我写文章的套路,上来就是先要问一句为什么?也就是为什么要有Hash一致性算法?就像以前介绍为什么要有Spring一样,首先会以历史的角度或者项目发展的角度来分析,今天的分享还是一样的套路,先从历史的角度来一步步分析,探讨一下到底什么是Hash一致性算法!

一、Redis集群的使用

我们在使用Redis的时候,为了保证Redis的高可用,提高Redis的读写性能,最简单的方式我们会做主从复制,组成Master-Master或者Master-Slave的形式,或者搭建Redis集群,进行数据的读写分离,类似于数据库的主从复制和读写分离。如下所示:  

hash一致性算法以及应用场景_什么不是算法的基本特性

同样类似于数据库,当单表数据大于500W的时候需要对其进行分库分表,当数据量很大的时候(标准可能不一样,要看Redis服务器容量)我们同样可以对Redis进行类似的操作,就是分库分表。

假设,我们有一个社交网站,需要使用Redis存储图片资源,存储的格式为键值对,key值为图片名称,value为该图片所在文件服务器的路径,我们需要根据文件名查找该文件所在文件服务器上的路径,数据量大概有2000W左右,按照我们约定的规则进行分库,规则就是随机分配,我们可以部署8台缓存服务器,每台服务器大概含有500W条数据,并且进行主从复制,示意图如下:

hash一致性算法以及应用场景_什么不是算法的基本特性

由于规则是随机的,所有我们的一条数据都有可能存储在任何一组Redis中,例如上图我们用户查找一张名称为”a.png”的图片,由于规则是随机的,我们不确定具体是在哪一个Redis服务器上的,因此我们需要进行1、2、3、4,4次查询才能够查询到(也就是遍历了所有的Redis服务器),这显然不是我们想要的结果,有了解过的小伙伴可能会想到,随机的规则不行,可以使用类似于数据库中的分库分表规则:按照Hash值、取模、按照类别、按照某一个字段值等等常见的规则就可以出来了!好,按照我们的主题,我们就使用Hash的方式。

二、为Redis集群使用Hash

可想而知,如果我们使用Hash的方式,每一张图片在进行分库的时候都可以定位到特定的服务器,示意图如下:

hash一致性算法以及应用场景_什么不是算法的基本特性

上图中,假设我们查找的是”a.png”,由于有4台服务器(排除从库),因此公式为hash(a.png) % 4 = 2 ,可知定位到了第2号服务器,这样的话就不会遍历所有的服务器,大大提升了性能!

三、使用Hash的问题

上述的方式虽然提升了性能,我们不再需要对整个Redis服务器进行遍历!但是,使用上述Hash算法进行缓存时,会出现一些缺陷,主要体现在服务器数量变动的时候,所有缓存的位置都要发生改变!

试想一下,如果4台缓存服务器已经不能满足我们的缓存需求,那么我们应该怎么做呢?很简单,多增加几台缓存服务器不就行了!假设:我们增加了一台缓存服务器,那么缓存服务器的数量就由4台变成了5台。那么原本hash(a.png) % 4 = 2 的公式就变成了hash(a.png) % 5 = ? , 可想而知这个结果肯定不是2的,这种情况带来的结果就是当服务器数量变动时,所有缓存的位置都要发生改变!换句话说,当服务器数量发生改变时,所有缓存在一定时间内是失效的,当应用无法从缓存中获取数据时,则会向后端数据库请求数据(还记得上一篇的《缓存雪崩》吗?)!

同样的,假设4台缓存中突然有一台缓存服务器出现了故障,无法进行缓存,那么我们则需要将故障机器移除,但是如果移除了一台缓存服务器,那么缓存服务器数量从4台变为3台,也是会出现上述的问题!

所以,我们应该想办法不让这种情况发生,但是由于上述Hash算法本身的缘故,使用取模法进行缓存时,这种情况是无法避免的,为了解决这些问题,Hash一致性算法(一致性Hash算法)诞生了!

四、一致性Hash算法的神秘面纱

一致性Hash算法也是使用取模的方法,只是,刚才描述的取模法是对服务器的数量进行取模,而一致性Hash算法是对2^32取模,什么意思呢?简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下:  

hash一致性算法以及应用场景_什么不是算法的基本特性

整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环

下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用IP地址哈希后在环空间的位置如下:  

hash一致性算法以及应用场景_什么不是算法的基本特性

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器!

例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下: 

hash一致性算法以及应用场景_什么不是算法的基本特性

根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

五、一致性Hash算法的容错性和可扩展性

现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响,如下所示:

hash一致性算法以及应用场景_什么不是算法的基本特性

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:

hash一致性算法以及应用场景_什么不是算法的基本特性
此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X !一般的,在一致性Hash算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性Hash算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

六、Hash环的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器,其环分布如下: 

hash一致性算法以及应用场景_什么不是算法的基本特性

此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性Hash算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器IP或主机名的后面增加编号来实现。

例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点: 

hash一致性算法以及应用场景_什么不是算法的基本特性

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

七、总结

上文中,我们一步步分析了什么是一致性Hash算法,主要是考虑到分布式系统每个节点都有可能失效,并且新的节点很可能动态的增加进来的情况,如何保证当系统的节点数目发生变化的时候,我们的系统仍然能够对外提供良好的服务,这是值得考虑的!

 

hash一致性算法以及应用场景_什么不是算法的基本特性

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185335.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • [M枚举] lc5. 最长回文子串(枚举+中心拓展+区间dp)「建议收藏」

    [M枚举] lc5. 最长回文子串(枚举+中心拓展+区间dp)「建议收藏」文章目录1.题目来源2.题目解析方法一:枚举1.题目来源链接:lc5.最长回文子串2.题目解析方法一:枚举回文串一共有两种,即长度为奇数的回文串,长度为偶数的回文串。我们可以枚举回文串的中心(偶数长度回文串假想一个中心就行了),然后分别拿两个指针l=i-1,r=i+1向左右两边同时拓展,若s[l]=s[r]则,l–,r++。一直进行该操作,直到不等或一方到达边界位置。我们针对每一个枚举位置i,都考虑其两种情况,即偶数,奇数都考虑一遍,取个最大的就行了。

  • php源码审计_代码审计入门cms

    php源码审计_代码审计入门cms目录一:代码审计的定义二:为什么选择PHP学习代码审计三:入门准备四:PHP常见的套路4.1 代码结构4.2 目录结构4.3参考项目五:如何调试代码六:代码审计的本质一:代码审计的定义通过阅读一些程序的源码去发现潜在的漏洞,比如代码不规范,算法性能不够,代码重用性不强以及其他的缺陷等等从安全人员的角度来看是:查找代码中是否存在安全问题,推断用户在操…

  • opencv的imshow函数_opencv函数手册

    opencv的imshow函数_opencv函数手册还是老习惯,分三步走。第一步,功能说明。第二步,结果图显示,第三步,API详解。第四步,代码展示(注释很详细,保证所有有C++基础的人都可以看懂。)第一步,功能说明:imread()功能就是载入一张图片。该函数经常配合imshow()函数一起使用,imshow()函数功能就是把你刚才载入的图片显示出来。第二步,结果图显示:如果你已经配置好环境那就来上手来试验一下吧。先显示两张图片,分别…

  • poj 3237 Tree(树链拆分)

    poj 3237 Tree(树链拆分)

  • golang激活码2021(JetBrains全家桶)

    (golang激活码2021)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容https://javaforall.cn/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~0UY7RF7AC5-eyJsaWNlb…

  • 闲谈IPv6-Anycast以及在Linux/Win7系统上的Anycast配置[通俗易懂]

    闲谈IPv6-Anycast以及在Linux/Win7系统上的Anycast配置[通俗易懂]正则安安每晚每隔三小时必然哭闹,我索性也就不睡了,反正也睡不好,起来泡茶,喝酒,作文。浙江温州皮鞋

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号