迁移学习之ResNet50和ResNet101(图像识别)

迁移学习之ResNet50和ResNet101(图像识别)文章目录1.实现的效果:2.主文件TransorResNet.py:1.实现的效果:实际的图片:(1)可以看到ResNet50预测的前三个结果中第一个结果为:whippet(小灵狗)(2)ResNet50预测的前三个结果中第一个结果为:Walker_hound(步行猎犬)(3)**从结果上来看,比之前的VGG16和VGG19预测的效果都要好(这里虽然不知道图片中的够具体是什么狗,但是结果都预测成了“狗”的类别)。**2.主文件TransorResNet.py:importosimpo

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

1.实现的效果:

在这里插入图片描述
实际的图片:
在这里插入图片描述
(1)可以看到ResNet50预测的前三个结果中第一个结果为:whippet(小灵狗)
(2)ResNet50预测的前三个结果中第一个结果为:Walker_hound(步行猎犬)
(3)从结果上来看,比之前的VGG16和VGG19预测的效果都要好(这里虽然不知道图片中的够具体是什么狗,但是结果都预测成了“狗”的类别)


关于InceptionV3(159层),Xception(126层),Inception_ResNet_V2(572层):
https://mydreamambitious.blog.csdn.net/article/details/123907490
关于VGG16和VGG19:
https://mydreamambitious.blog.csdn.net/article/details/123906643
关于MobileNet(88层)和MobileNetV2(88层):
https://mydreamambitious.blog.csdn.net/article/details/123907955
关于DenseNet121(121层),DenseNet169(169层),DenseNet201(201层):
https://mydreamambitious.blog.csdn.net/article/details/123908742
EfficientNetBX
https://mydreamambitious.blog.csdn.net/article/details/123929264

2.主文件TransorResNet.py:

import os
import keras
import numpy as np
from PIL import Image
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array
from keras.applications.resnet import preprocess_input,decode_predictions
def load_ResNet50():
#加载ResNet50并且保留顶层(也就是全连接层)
model_ResNet50=keras.applications.resnet.ResNet50(weights='imagenet')
#图形路径
curr_path=os.getcwd()
img_path=curr_path+'\\images\\train\\dog\\1.jpg'
#将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224
img=image.load_img(img_path,target_size=(224,224))
#首先需要转换为向量的形式
img_out=image.img_to_array(img)
#扩充维度
img_out=np.expand_dims(img_out,axis=0)
#对输入的图像进行处理
img_out=preprocess_input(img_out)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
#上面这段话的意思是输出包括(类别,图像描述,输出概率)
preds=model_ResNet50.predict(img_out)
#输出前三个结果的可能性
print('Predicted: ',decode_predictions(preds,top=3)[0])
print('Predicted: ',decode_predictions(preds,top=3))
def load_ResNet101():
# 加载ResNet50并且保留顶层(也就是全连接层)
model_ResNet50 = keras.applications.resnet.ResNet101(weights='imagenet')
# 图形路径
img_path = 'images/train/dog/1.jpg'
# 将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224
img = image.load_img(img_path, target_size=(224, 224))
# 首先需要转换为向量的形式
img_out = image.img_to_array(img)
# 扩充维度
img_out = np.expand_dims(img_out, axis=0)
# 对输入的图像进行处理
img_out = preprocess_input(img_out)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
# 上面这段话的意思是输出包括(类别,图像描述,输出概率)
preds = model_ResNet50.predict(img_out)
# 输出前三个结果的可能性
print('Predicted: ', decode_predictions(preds, top=3)[0])
print('Predicted: ', decode_predictions(preds, top=3))
if __name__ == '__main__':
print('Pycharm')
print('load_ResNet50:\n')
load_ResNet50()
print('load_ResNet101:\n')
load_ResNet101()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185075.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号