机器学习网格搜索寻找最优参数[通俗易懂]

机器学习网格搜索寻找最优参数[通俗易懂]整理一下前阶段复习的关于网格搜索的知识:程序及数据请到github上下载GridSearch练习网格搜索是将训练集训练的一堆模型中,选取超参数的所有值(或者代表性的几个值),将这些选取的参数及值全部列出一个表格,并分别将其进行模拟,选出最优模型。上面是数据集的可视化分布图,具体代码如下:%matplotlibinlineimportpandasaspdimpo…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

整理一下前阶段复习的关于网格搜索的知识:

程序及数据 请到github 上 下载 GridSearch练习

网格搜索是将训练集训练的一堆模型中,选取超参数的所有值(或者代表性的几个值),将这些选取的参数及值全部列出一个表格,并分别将其进行模拟,选出最优模型。

上面是数据集的可视化分布图,具体代码如下:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv('data/grid.csv',header=None)
X = data[[0,1]]
y = data[2]
#print(y)
X_blue = data[data[2]== 0]
X_red = data[data[2]== 1]
plt.scatter(X_blue[0],X_blue[1],c='blue',edgecolor='k',s=50)
plt.scatter(X_red[0],X_red[1],c='red',edgecolor='k',s=50)
plt.xlim(-2.05,2.05)
plt.ylim(-2.05,2.05)

采用决策树来训练数据

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train,y_train)

train_predictions = clf.predict(X_train)
test_predictions = clf.predict(X_test)
print(clf.get_params())

数据分类可视化自定义函数的代码如下:

def plot_model(X, y, clf):
    plt.scatter(X_blue[0],X_blue[1],c='blue',edgecolor='k',s=50)
    plt.scatter(X_red[0],X_red[1],c='red',edgecolor='k',s=50)

    plt.xlim(-2.05,2.05)
    plt.ylim(-2.05,2.05)
    plt.grid(False)
    plt.tick_params(
        axis='x',
        which='both',
        bottom='off',
        top='off')

    r = np.linspace(-2.1,2.1,300)
    s,t = np.meshgrid(r,r)
    s = np.reshape(s,(np.size(s),1))
    t = np.reshape(t,(np.size(t),1))
    h = np.concatenate((s,t),1)

    z = clf.predict(h)

    s = s.reshape((np.size(r),np.size(r)))
    t = t.reshape((np.size(r),np.size(r)))
    z = z.reshape((np.size(r),np.size(r)))

    plt.contourf(s,t,z,colors = ['blue','red'],alpha = 0.2,levels = range(-1,2))
    if len(np.unique(z)) > 1:
        plt.contour(s,t,z,colors = 'k', linewidths = 2)
    plt.show()

数据集分类的可视化显示:

plot_model(X, y, clf)

 机器学习网格搜索寻找最优参数[通俗易懂]

 从上面的界限可视化上来看是处于过拟合的状态,因为在训练数据的时候未设定参数,超参数 max_depth=None 时候,训练数据时候一直到决策树的最底层的叶子节点结束,所以就出现了过拟合的状态。

模型复杂度曲线可视化

from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import validation_curve
#from sklearn.tree import DecisionTreeRegressor

def ModelComplexity(X, y):
    """ Calculates the performance of the model as model complexity increases.
        The learning and testing errors rates are then plotted. """
    
    # Create 10 cross-validation sets for training and testing
    cv = ShuffleSplit(X.shape[0], test_size = 0.2, random_state = 42)

    # Vary the max_depth parameter from 1 to 10
    max_depth = np.arange(1,11)
    
    scorer = make_scorer(f1_score)

    # Calculate the training and testing scores
    train_scores, test_scores = validation_curve(DecisionTreeClassifier(), X, y, \
        param_name = "max_depth", param_range = max_depth, cv = cv, scoring =scorer)

    # Find the mean and standard deviation for smoothing
    train_mean = np.mean(train_scores, axis=1)
    train_std = np.std(train_scores, axis=1)
    test_mean = np.mean(test_scores, axis=1)
    test_std = np.std(test_scores, axis=1)

    # Plot the validation curve
    plt.figure(figsize=(7, 5))
    plt.title('Decision Tree Classifier Complexity Performance')
    plt.plot(max_depth, train_mean, 'o-', color = 'r', label = 'Training Score')
    plt.plot(max_depth, test_mean, 'o-', color = 'g', label = 'Validation Score')
    plt.fill_between(max_depth, train_mean - train_std, \
        train_mean + train_std, alpha = 0.15, color = 'r')
    plt.fill_between(max_depth, test_mean - test_std, \
        test_mean + test_std, alpha = 0.15, color = 'g')
    
    # Visual aesthetics
    plt.legend(loc = 'lower right')
    plt.xlabel('Maximum Depth')
    plt.ylabel('Score')
    plt.ylim([-0.05,1.05])
    plt.show()

ModelComplexity(X, y)

机器学习网格搜索寻找最优参数[通俗易懂]

从上面的复杂度曲线图可以看出,在max_depth=4 的时候 ,训练集和测试集的得分是最接近的,在向右的时候,测试集的得分就呈下降趋势, 虽然此时训练集的得分很高,但训练集的得分下降了,这说明在测试集上模型没有很好的拟合数据,就是过拟合状态了。

下面来采用网格搜索来寻找最优参数,本例中以 max_depth 和min_samples_leaf 这两个参数来进行筛选

from sklearn.model_selection import GridSearchCV
clf = DecisionTreeClassifier(random_state=42)
scorer = make_scorer(f1_score)

parameters = {'max_depth':[2,4,6,8,10],'min_samples_leaf':[2,4,6,8,10], 'min_samples_split':[2,4,6,8,10]}
grid_obj = GridSearchCV(clf, parameters, scoring=scorer)
grid_obj.fit(X_train,y_train)

best_clf = grid_obj.best_estimator_
print(grid_obj.best_params_)

best_clf.fit(X_train,y_train)
best_train_predictions = best_clf.predict(X_train)
best_test_predictions = best_clf.predict(X_test)

print('The training F1 Score is', f1_score(best_train_predictions, y_train))
print('The testing F1 Score is', f1_score(best_test_predictions, y_test))
plot_model(X, y, best_clf)

机器学习网格搜索寻找最优参数[通俗易懂]

上面是通过网格搜索得出的最优模型来模拟出来的分类界限可视化图,可以从图中很直观的看出,划分的效果好了很多。

下面看下决策树的分支示意图:图一 是优化前 max_depth=None 的情况,图二 是网格搜索出的最优模型

机器学习网格搜索寻找最优参数[通俗易懂]

                                                                                                 图1 :优化前

    

机器学习网格搜索寻找最优参数[通俗易懂]

                                                                                图二:网格搜索的最优模型

具体代码在程序中,请大家自行阅读。

最后给出网格搜索前后的模型对比示意图:(学习曲线的可视化程序在github 的源码中,请大家自行下载查看 网格搜索练习

机器学习网格搜索寻找最优参数[通俗易懂]

时间关系,写的比较粗糙,请大家多提宝贵意见,我会逐步改进! 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/184203.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • C#基础学习之——(一)Dock与Anchor

    C#基础学习之——(一)Dock与Anchor提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Dock与Anchor是什么?1.Dock2.Anchor二、使用步骤1.设计界面2.使用Anchor与Dock总结前言C#基础学习之——(一)Dock与Anchor最近在对窗体控件进行布局时,发现了Dock与Anchor这两种不同的窗体布局属性,所以查阅了一些资料,在这里进行记录。提示:以下是本篇文章正文内容,下面案例可供参考一、Dock与Anchor是什么?1.Dock①Dock在英文中是停泊的意

  • dell服务器显示器fre,戴尔发布Gaming 24/27游戏显示器新品 支持144/155Hz FreeSync

    dell服务器显示器fre,戴尔发布Gaming 24/27游戏显示器新品 支持144/155Hz FreeSync访问购买页面:具体说来,24英寸机型覆有防眩光涂层(硬度3H),长宽比为16:9、支持1670万色,水平/垂直可视角度为160/170°。此外还有LEDedgelight、ComfortView、戴尔显示管理器、且兼容VESA壁挂安装。接口方面,该机型提供了2×HDMI1.4、DisplayPort、一个USB3.0上联+两个USB3.0下联、耳机…

  • 计算机算逆矩阵_矩阵求解

    计算机算逆矩阵_矩阵求解求逆矩阵的快速方法(用于编程)??1222ΡΡΡΡΡ?ΑΑΑΑΑΑ3ΑΒΒΒ3ΑΒΑΒΑΒΑΒΒΒΒ第…

  • STM32F103C8T6单片机简介

    STM32F103C8T6单片机简介TheSTM32F103xxmedium-densityperformancelinefamilyincorporatesthehigh-performanceARMCortex-M332-bitRISCcoreoperatingata72MHzfrequency,high-speedembeddedmemories(Flashmemoryupto128KbytesandSRAMupto20Kbytes),andanextensive

  • 安卓长按复制_Android长按弹出选项框

    安卓长按复制_Android长按弹出选项框android:textIsSelectable=”true”重点写在最前面,只用在textView中加入这个属性就可以满足长按复制了一。网上查了下有两中方式可以实现长按复制粘贴1)使用setTextIsSelectable()方法 代码中直接对TextView使用setTextIsSelectable()方法,将TextView设置成可点按选择的即可. TextViewtv=

  • libsvm工具箱C++编程实践2

    libsvm工具箱C++编程实践2

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号