大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
定义:
设 X 1 ∼ χ 2 ( m ) , X 2 ∼ χ 2 ( n ) X_{1} \sim \chi^{2}(m), X_{2} \sim \chi^{2}(n) X1∼χ2(m),X2∼χ2(n), X 1 X_{1} X1 与 X 2 X_{2} X2 相互独立,
则称随机变量
F = X 1 / m X 2 / n F=\frac{X_{1} / m}{X_{2} / n} F=X2/nX1/m
服从自由度为 m m m 及 n n n 的 F F F 分布, m m m 称为第一自由度, n \boldsymbol{n} n 称为第二自由度, 记作 F ∼ F ( m , n ) F \sim F({m}, {n}) F∼F(m,n) .
概率密度函数
p ( x ) = ( Γ ( m + n 2 ) Γ ( m 2 ) Γ ( n 2 ) ( m n ) m 2 x m 2 − 1 ( 1 + m n x ) − m + n 2 , x > 0 0 , x ≤ 0 \begin{array}{l} p(x)=\left(\begin{array}{cc} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1}\left(1+\frac{m}{n} x\right)^{-\frac{m+n}{2}} & , x>0 \\ 0, & x \leq 0 \end{array}\right. \end{array} p(x)=(Γ(2m)Γ(2n)Γ(2m+n)(nm)2mx2m−1(1+nmx)−2m+n0,,x>0x≤0
2021年7月2日14:03:38
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183687.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...