大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
1. 归一化
归一化就是要把需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。
首先归一化是为了后面数据处理的方便,其次是保证程序运行时收敛加快。归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在某个区间上是统计的坐标分布。归一化有同一、统一和合一的意思。
归一化的目的,是使得没有可比性的数据变得具有可比性,同时又保持相比较的两个数据之间的相对关系,如大小关系;或是为了作图,原来很难在一张图上作出来,归一化后就可以很方便的给出图上的相对位置等。
2. opencv中的归一化函数normalize()
opencv文档中的介绍如下:
C++: void normalize(InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
C++: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
Python: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) → dst
Parameters: |
|
---|
The functions normalize scale and shift the input array elements so that
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm() and Mat::convertTo().
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.
从上面可以看成,opencv提供了四种不同的归一化方式,分别为NORM_INF, NORM_MINMAX,NORM_L1和NORM_L2。下面分别解释一下各自代表的含义及归一化公式。
NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化。
比如归一化到(min,max)范围内:
NORM_INF: 归一化数组的(切比雪夫距离)L∞范数(绝对值的最大值)
NORM_L1 : 归一化数组的(曼哈顿距离)L1-范数(和的绝对值)
NORM_L2: 归一化数组的(欧几里德距离)L2-范数
而其中的dtype为负数时,输出数组的type与输入数组的type相同;
否则,输出数组与输入数组只是通道数相同,而tpye=CV_MAT_DEPTH(dtype).
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183069.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...