大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
LR模型是广义线性模型。LR模型(对数几率回归模型),虽然叫回归,但是其本质为分类。对数几率函数是一种sigmoid函数。
线性模型有可解释性强、易于并行的优点。但是其难以表示非线性关系,所以模型的准确性可能不好。
为了增强原始特征与拟合目标之间的非线性关系,通常需要对原始特征做一些非线性转换。常用的转换方法包括:连续特征离散化、特征之间的交叉等。
离散化相当于把连续函数变成分段函数来增加非线性。比如说将连续的工资数分为1000档、2000档等
特征交叉是算法工程师把领域知识融入模型的一种方式。比如说女性特征+双十一的时间特征组合(女性,双11)这一特征,可能就是一个极好的预测购买的特征。
总上,单纯的LR模型性能可能不算太好,需要进行特征工程。但是特征工程费时费力,所以LR模型算是一个基本模型。可以加入很多优化。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/182598.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...