大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
一、基尼指数的概念
基尼指数(Gini不纯度)表示在样本集合中一个随机选中的样本被分错的概率。
注意:Gini指数越小表示集合中被选中的样本被参错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。当集合中所有样本为一个类时,基尼指数为0.
二、基尼系数的计算公式
基尼指数的计算公式为:
三、计算示例
我们分别来计算一下决策树中各个节点基尼系数:
以下excel表格记录了Gini系数的计算过程。
我们可以看到,GoodBloodCircle的基尼系数是最小的,也就是最不容易犯错误,因此我们应该把这个节点作为决策树的根节点。在机器学习中,CART分类树算法使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,不纯度越低,特征越好。这和信息增益(比)相反。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/182267.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...