希尔伯特黄变换信号处理_希尔伯特变换后频谱图

希尔伯特黄变换信号处理_希尔伯特变换后频谱图希尔伯特黄变换(Hilbert-Huang)包括两部分工作,分别是经验模态分解(EMD)和希尔伯特变换(HT)。经验模态分解:找到信号x(t)的极大值和极小值,通过三次样条拟合得到上、下包络线,计算其均值得m1(t). 得到第一个分量,检擦其是否满足模态分量的条件:①得极大值点与过0点数量相差不超过1个;②的上、下包络线均值恒为0。如不满足,重复操作1、2直至得到满足模态函数…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

希尔伯特黄变换(Hilbert-Huang)包括两部分工作,分别是经验模态分解(EMD)和希尔伯特变换(HT)。

 

1. 经验模态分解:

  1. 找到信号x(t)的极大值和极小值,通过三次样条拟合得到上、下包络线,计算其均值得m1(t).
  2. 得到第一个分量  h_1{}(t)=x(t)-m_1{}(t) , 检擦其是否满足模态分量的条件: ①  h_1{}(t) 得极大值点与过0点数量相差不超过1个;② h_1{}(t) 的上、下包络线均值恒为0。如不满足,重复操作1、2直至得到满足模态函数(IMF)条件的模态分量 c_1{}(t).
  3. 原始信号减去第一个模态分量,得到信号 r_{1}(t)=x(t)-c_{1}(t) , 将 r_{1}(t) 当成新的“原始信号”,重复以上操作,直至筛选条件      SD=\frac{\sum_{t=0}^{T}|h_{k-1}(t)-h_{k}(t)|^{2}}{\sum_{t=0}^{T}h_{k-1}^{2}}        小于预设值时,经验模态分解结束。这样原始信号便分成若干经验模态分量和一个残余信号:    x(t)=\sum_{i=0}^{n}c_{i}+r_{n}(t)

2. 希尔伯特变换:

对每个IMF ci(t)求其Hilbert变换:d_{i}(t)=\frac{1}{\pi }\int_{-\infty }^{+\infty}\frac{c_{1}(\tau)}{t-\tau}d\tau ; 根据\omega _{i}(t)=\frac{d\theta _{i}(t)}{dt}a_{i}(t) = \sqrt{c_{i}^{2}(t)+d_{i}^{2}(t))}

可以求得相应IMF的瞬时频率和瞬时幅值,可将原始信号表示成    x(t)=\sum_{i=1}^{n}a_{i}(t)e^{j\int \omega _{i}(t)dt}  ,在经过nEMD分解后,残余信号r_{n}(t)常熟或单调函数,对信号提取没有实质影响,故舍去。

3. 方法缺陷:

信号的端点不可能同时处于极大值或极小值,因此,上、下包络在数据序列两端会发散,且这种发散会随着运算的进行而逐渐向内,从而使得整个数据序列受到影响。EMD分解存在的端点效应,目前有端点镜像方法、多项式拟合法、极值延拓法、平行延拓法等进行改善。

4. MATLAB(2018rb版本)实现和探讨

#代码详见下面网址

使用两个信号叠加作为分析对象

经验模态分解后得到的imf分量分布:

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

这是希尔伯特黄变换后得到的频谱图:

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

##其实对比时频谱图和imf分量图就可以发现,时频谱图是imf图加上能量分布而已,如下:

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

##边际谱

时频谱图已经出来,下面可根据边际谱求解公式求解边际谱。如下:

h(\omega)=\int_{0}^{T}H(\omega,t)dt

       这个公式是固定ω不变,对t积分。定积分在离散中可以近似分解为多个长方形的面积和。在离散信号中,H(ω,t)是时频谱矩阵H(ω,k),长方形的长为第k个数据对应的H(ω,k),宽为时间间隔,即\Delta t=1/f_{s}(采样频率的倒数),因此积分公式可改为如下公式:

h(\omega)=\sum_{k=1}^{N}H(\omega,k)* 1/f_{s}

因此,边际谱本来可以用一行代码搞定:

bjp = sum(hs,2)*1/fs

但问题来了,由自带函数HHT得到hs的数据顺序是错的。时频谱矩阵相当于把时频谱行方向用频率切割,列方向用时刻切割,得出多个小方块,每一个方块对应的频率用中心频率表示,对应的时刻则记录数据的时刻,小方块里的数据则表示该时刻,该频率的能量值(振幅的平方)。

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

hs是个稀疏矩阵,只记录非零的位置,和该位置对应的能量。但在这里,两者的顺序不同,hs记录的位置按以下方向记录:

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

然而对应的能量数据,是按得到的imfinse矩阵的顺序排列,两者不相匹配。因此,得到的hs矩阵是一个错误的时频谱矩阵,不能直接用来计算边际谱。

那么,接下来的工作只能根据得到的imf分量每一时刻的瞬时频率和瞬时能量来获得时频谱矩阵。

其实关键步骤是把每一个瞬时频率对应的小方格确定就可以了,然后把每一个小方格内的所有分量的能量累加即可:

时频矩阵大小和hs一样,最大频率为采样频率的一半。

确定中心频率向量

每一个瞬时频率所在的小方格

然后把k<=0的剔除,再累加,就可以得到时频谱矩阵,然后计算得到边际谱,如下图所示:

希尔伯特黄变换信号处理_希尔伯特变换后频谱图

以下是最新代码且包含相关报告,点此链接下载:

说明:代码受到用户很高的褒赞,很荣幸,但请别忘记【点赞】+【收藏】,了解其内核并写代码不易,希望理解!

如果有其他问题可评论,会不定时根据问题进行更新

请先点赞+收藏再下载

需要私信

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/182237.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Python的特点是什么_python具有的特点

    Python的特点是什么_python具有的特点一、特点:1.易于学习:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单。2.易于阅读:Python代码定义的更清晰。3.易于维护:Python的成功在于它的源代码是相当容易维护的。4.一个广泛的标准库:Python的最大的优势之一是丰富的库,跨平台的,在UNIX,Windows和Macintosh兼容很好。5.互动模式:互动模式的支持,您可以从终端输入执行代码并获…

  • Java多线程之wait(),notify(),notifyAll()

    Java多线程之wait(),notify(),notifyAll()

    2021年11月30日
  • nifi mysql hive_Nifi入门

    nifi mysql hive_Nifi入门NiFi基本概念概述简单地说,NiFi是为了自动化系统之间的数据流而构建的。虽然术语“数据流”在各种环境中使用,但我们在此处使用它来表示系统之间自动化和管理的信息流。这个问题空间一直存在,因为企业有多个系统,其中一些系统创建数据,一些系统消耗数据。已经讨论并广泛阐述了出现的问题和解决方案模式。企业集成模式中提供了一个全面且易于使用的表单。NiFi的诞生,要致力于解决的问题:因为网络故障、磁盘故障…

    2022年10月25日
  • 【脯】一首诗

    【脯】一首诗

  • LeakCanary 中文使用说明

    LeakCanary 中文使用说明

  • trylock参数_Qt互斥量的trylock使用

    trylock参数_Qt互斥量的trylock使用spinlock:spin_trylock() 成功返回1;否则返回0。spin_trylock()->raw_spin_trylock()->_raw_spin_trylock()->do_raw_spin_trylock()mutex:mutex_trylock() 成功返回1,失败返回0。semaphore:down_trylock() 成功返回0,失败返回1。rw_sema

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号