卷积 bn_卷积积分实验

卷积 bn_卷积积分实验1.为什么要合并BN层在训练深度网络模型时,BN(BatchNormalization)层能够加速网络收敛,并且能够控制过拟合,一般放在卷积层之后。BN层将数据归一化后,能够有效解决梯度消失与梯度爆炸问题。虽然BN层在训练时起到了积极作用,然而,在网络前向推断时多了一些层的运算,影响了模型的性能,且占用了更多的内存或者显存空间。目前,很多先进的网络模型(ResNet,MobileN…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

1.  为什么要合并BN层

在训练深度网络模型时,BN(Batch Normalization)层能够加速网络收敛,并且能够控制过拟合,一般放在卷积层之后。BN 层将数据归一化后,能够有效解决梯度消失与梯度爆炸问题。虽然 BN 层在训练时起到了积极作用,然而,在网络前向推断时多了一些层的运算,影响了模型的性能,且占用了更多的内存或者显存空间。目前,很多先进的网络模型(ResNet,MobileNet,Xception,ShuffleNet 等)都使用了BN技术,因此,我们有必要将 BN 层的参数合并到卷积层,来提升模型前向推断的速度。

2.  BN层与卷积层合并的数学原理

卷积层中

卷积权重: W,卷积偏置:B

卷积层运算:W \times X+B

BN 层中
均值:\mu ,方差:\delta,缩放因子:\gamma,偏移:\beta, 一个较小数(防止分母为0):\epsilon

 \large \mu \leftarrow \tfrac{1}{m}\sum_{i=1}^{m}x_i           \large \sigma^2 \leftarrow \tfrac{1}{m}\sum_{i=1}^{m}(x_i-\mu)^2

\large \hat{x_i} \leftarrow \frac{x_i-\mu}{\sqrt{\sigma^2+\epsilon }}        \large y_i \leftarrow \gamma \hat{x_i} + \beta

BN层和卷积层合并后:

\large \alpha = \frac{\gamma }{\sqrt{\sigma^2+\epsilon }}

\large W_{merged} = W\times \alpha

\large B_{merged} =B\times \alpha+(\beta-\mu\times a)

3.  实验结果

机器:显卡 GTX 1080Ti,i7 CPU

本实验对比了Resnet50 模型合并BN层前后的性能,分类精度保持不变,速度显著提升。

模型 CPU前向时间 GPU前向时间
Resnet50(合并前) 176.17ms 11.03ms
Resnet50(合并后) 161.69ms 7.3ms
提升 8.96% 33.27%

 4.  合并的python脚本

该脚本需要caffe的python接口

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import numpy as np
import sys
import os
import os.path as osp
import google.protobuf as pb
import google.protobuf.text_format
from argparse import ArgumentParser
import caffe

caffe.set_mode_cpu()

def load_and_fill_biases(src_model, src_weights, dst_model, dst_weights):
    with open(src_model) as f:
        model = caffe.proto.caffe_pb2.NetParameter()
        pb.text_format.Merge(f.read(), model)

    for i, layer in enumerate(model.layer):
        if layer.type == 'Convolution': # or layer.type == 'Scale':
            # Add bias layer if needed
            if layer.convolution_param.bias_term == False:
                layer.convolution_param.bias_term = True
                layer.convolution_param.bias_filler.type = 'constant'
                layer.convolution_param.bias_filler.value = 0.0

    with open(dst_model, 'w') as f:
        f.write(pb.text_format.MessageToString(model))

    caffe.set_mode_cpu()
    net_src = caffe.Net(src_model, src_weights, caffe.TEST)
    net_dst = caffe.Net(dst_model, caffe.TEST)
    for key in net_src.params.keys():
        for i in range(len(net_src.params[key])):
            net_dst.params[key][i].data[:] = net_src.params[key][i].data[:]

    if dst_weights is not None:
        # Store params
        pass

    return net_dst


def merge_conv_and_bn(net, i_conv, i_bn, i_scale):
    # This is based on Kyeheyon's work
    assert(i_conv != None)
    assert(i_bn != None)

    def copy_double(data):
        return np.array(data, copy=True, dtype=np.double)

    key_conv = net._layer_names[i_conv]
    key_bn = net._layer_names[i_bn]
    key_scale = net._layer_names[i_scale] if i_scale else None

    # Copy
    bn_mean = copy_double(net.params[key_bn][0].data)
    bn_variance = copy_double(net.params[key_bn][1].data)
    num_bn_samples = copy_double(net.params[key_bn][2].data)

    # and Invalidate the BN layer
    net.params[key_bn][0].data[:] = 0
    net.params[key_bn][1].data[:] = 1
    net.params[key_bn][2].data[:] = 1

    if num_bn_samples[0] == 0:
        num_bn_samples[0] = 1

    if net.params.has_key(key_scale):
        print 'Combine {:s} + {:s} + {:s}'.format(key_conv, key_bn, key_scale)
        scale_weight = copy_double(net.params[key_scale][0].data)
        scale_bias = copy_double(net.params[key_scale][1].data)
        net.params[key_scale][0].data[:] = 1
        net.params[key_scale][1].data[:] = 0

    else:
        print 'Combine {:s} + {:s}'.format(key_conv, key_bn)
        scale_weight = 1
        scale_bias = 0

    weight = copy_double(net.params[key_conv][0].data)
    bias = copy_double(net.params[key_conv][1].data)

    alpha = scale_weight / np.sqrt(bn_variance / num_bn_samples[0] + 1e-5)
    net.params[key_conv][1].data[:] = bias * alpha + (scale_bias - (bn_mean / num_bn_samples[0]) * alpha)
    for i in range(len(alpha)):
        net.params[key_conv][0].data[i] = weight[i] * alpha[i]


def merge_batchnorms_in_net(net):
    # for each BN
    for i, layer in enumerate(net.layers):
        if layer.type != 'BatchNorm':
            continue

        l_name = net._layer_names[i]

        l_bottom = net.bottom_names[l_name]
        assert(len(l_bottom) == 1)
        l_bottom = l_bottom[0]
        l_top = net.top_names[l_name]
        assert(len(l_top) == 1)
        l_top = l_top[0]

        can_be_absorbed = True

        # Search all (bottom) layers
        for j in xrange(i - 1, -1, -1):
            tops_of_j = net.top_names[net._layer_names[j]]
            if l_bottom in tops_of_j:
                if net.layers[j].type not in ['Convolution', 'InnerProduct']:
                    can_be_absorbed = False
                else:
                    # There must be only one layer
                    conv_ind = j
                    break

        if not can_be_absorbed:
            continue

        # find the following Scale
        scale_ind = None
        for j in xrange(i + 1, len(net.layers)):
            bottoms_of_j = net.bottom_names[net._layer_names[j]]
            if l_top in bottoms_of_j:
                if scale_ind:
                    # Followed by two or more layers
                    scale_ind = None
                    break

                if net.layers[j].type in ['Scale']:
                    scale_ind = j

                    top_of_j = net.top_names[net._layer_names[j]][0]
                    if top_of_j == bottoms_of_j[0]:
                        # On-the-fly => Can be merged
                        break

                else:
                    # Followed by a layer which is not 'Scale'
                    scale_ind = None
                    break


        merge_conv_and_bn(net, conv_ind, i, scale_ind)

    return net


def process_model(net, src_model, dst_model, func_loop, func_finally):
    with open(src_model) as f:
        model = caffe.proto.caffe_pb2.NetParameter()
        pb.text_format.Merge(f.read(), model)

    for i, layer in enumerate(model.layer):
        map(lambda x: x(layer, net, model, i), func_loop)

    map(lambda x: x(net, model), func_finally)

    with open(dst_model, 'w') as f:
        f.write(pb.text_format.MessageToString(model))


# Functions to remove (redundant) BN and Scale layers
to_delete_empty = []
def pick_empty_layers(layer, net, model, i):
    if layer.type not in ['BatchNorm', 'Scale']:
        return

    bottom = layer.bottom[0]
    top = layer.top[0]

    if (bottom != top):
        # Not supperted yet
        return

    if layer.type == 'BatchNorm':
        zero_mean = np.all(net.params[layer.name][0].data == 0)
        one_var = np.all(net.params[layer.name][1].data == 1)

        if zero_mean and one_var:
            print 'Delete layer: {}'.format(layer.name)
            to_delete_empty.append(layer)

    if layer.type == 'Scale':
        no_scaling = np.all(net.params[layer.name][0].data == 1)
        zero_bias = np.all(net.params[layer.name][1].data == 0)

        if no_scaling and zero_bias:
            print 'Delete layer: {}'.format(layer.name)
            to_delete_empty.append(layer)


def remove_empty_layers(net, model):
    map(model.layer.remove, to_delete_empty)


# A function to add 'engine: CAFFE' param into 1x1 convolutions
def set_engine_caffe(layer, net, model, i):
    if layer.type == 'Convolution':
        if layer.convolution_param.kernel_size == 1\
            or (layer.convolution_param.kernel_h == layer.convolution_param.kernel_w == 1):
            layer.convolution_param.engine = dict(layer.convolution_param.Engine.items())['CAFFE']


def main():
    # Set default output file names
    if args.output_model is None:
       file_name = osp.splitext(args.model)[0]
       args.output_model = file_name + '_inference.prototxt'
    if args.output_weights is None:
       file_name = osp.splitext(args.weights)[0]
       args.output_weights = file_name + '_inference.caffemodel'

    net = load_and_fill_biases(args.model, args.weights, args.model + '.temp.pt', None)
    net = merge_batchnorms_in_net(net)

    process_model(net, args.model + '.temp.pt', args.output_model,
                  [pick_empty_layers, set_engine_caffe],
                  [remove_empty_layers])

    # Store params
    net.save(args.output_weights)


if __name__ == '__main__':
   parser = ArgumentParser(
           description="Generate Batch Normalized model for inference")
   parser.add_argument('--model', default="MobileNetSSD_deploy.prototxt", help="The net definition prototxt")
   parser.add_argument('--weights', default="MobileNetSSD_deploy.caffemodel", help="The weights caffemodel")
   parser.add_argument('--output_model')
   parser.add_argument('--output_weights')
   args = parser.parse_args()
   main()

脚本下载地址:

https://download.csdn.net/download/kangdi7547/10578152

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/182177.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • gridview布局_grid css

    gridview布局_grid css页面代码

  • 数据库系统的特点_关系数据模型只能表示

    数据库系统的特点_关系数据模型只能表示数据结构化:数据库系统实现整体数据的结构化,是数据库的主要特征之一,也是数据库系统与文件系统的本质区别。“整体”结构化是指在数据库中的数据不再仅仅针对某一应用,而是面向全组织,不仅数据内部结构化,

  • office visio2007密钥_office免费密钥

    office visio2007密钥_office免费密钥不知道你是哪个版本,故两个版本密玥全部奉上KFPTX-FNJJ3-CKKDJ-WMQ9W-78PFRNHQB6-GTDVM-B9Q6Q-4X8TF-KBQ73祝你激活成功,谢谢采纳!https://zhidao.baidu.com/question/570302149.html…

  • Android 代码混淆 混淆方案

    Android 代码混淆 混淆方案本篇文章:自己在混淆的时候整理出比较全面的混淆方法,比较实用,自己走过的坑,淌出来的路。请大家不要再走回头路,可能只要我们代码加混淆,一点不对就会导致项目运行崩溃等后果,有许多人发现没有打包运行好好地,打包完成以后而又不不可以了,导致了许多困惑,本片文章来问大家解决困惑,希望对大家有帮助。

  • docker部署jenkins安装使用教程_docker安装python

    docker部署jenkins安装使用教程_docker安装python前言使用docker安装jenkins环境,jenkins构建的workspace目录默认是在容器里面构建的,如果我们想执行python3的代码,需进容器内部安装python3的环境。进jenki

  • 免费pdf转word在线转换器[通俗易懂]

    免费pdf转word在线转换器[通俗易懂]免费pdf转word在线转换器   在办公环境下如何将PDF转换成Word,是不少上班族普遍需要了解的问题之一。面对上百份需要处理的文档,其实否不用安装专业的PDF转Word转换器,借助免费PDF转Word在线转换器就能轻松帮你搞定PDF转Word问题。  最新发布的迅捷免费pdf转word在线转换器,是目前转换效果最好的转换工具,能够轻松实现批量PDF文件的转换,对于个人或者企业用户来说

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号