国内数据集网站_数据网站

国内数据集网站_数据网站如果你是一个初学者,你每完成一个新项目后自身能力都会有极大的提高,如果你是一个有经验的数据科学专家,你已经知道这里所蕴含的价值。 本文将为您提供一个网站/资源列表,从中你可以使用数据来完成你自己的数据项目,甚至创造你自己的产品。一.如何使用这些资源?如何使用这些数据源是没有限制的,应用和使用只受到您的创造力和实际应用。使用它们最简单的方法是进行数据项目并在网站上发布它们。这不仅能提高你的数…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

如果你是一个初学者,你每完成一个新项目后自身能力都会有极大的提高,如果你是一个有经验的数据科学专家,你已经知道这里所蕴含的价值。 
本文将为您提供一个网站/资源列表,从中你可以使用数据来完成你自己的数据项目,甚至创造你自己的产品。

.如何使用这些资源?

如何使用这些数据源是没有限制的,应用和使用只受到您的创造力和实际应用。使用它们最简单的方法是进行数据项目并在网站上发布它们。这不仅能提高你的数据和可视化技能,还能改善你的结构化思维。另一方面,如果你正在考虑/处理基于数据的产品,这些数据集可以通过提供额外的/新的输入数据来增加您的产品的功能。所以,继续在这些项目上工作吧,与更大的世界分享它们,以展示你的数据能力!我们已经在不同的部分中划分了这些数据源,以帮助你根据应用程序对数据源进行分类。我们从简单、通用和易于处理数据集开始,然后转向大型/行业相关数据集。然后,我们为特定的目的——文本挖掘、图像分类、推荐引擎等提供数据集的链接。这将为您提供一个完整的数据资源列表。如果你能想到这些数据集的任何应用,或者知道我们漏掉了什么流行的资源,请在下面的评论中与我们分享。(部分可能需要翻墙)

.由简单和通用的数据集开始

1.data.gov( https://www.data.gov/ ) 
这是美国政府公开数据的所在地,该站点包含了超过19万的数据点。这些数据集不同于气候、教育、能源、金融和更多领域的数据。 

2.data.gov.in( https://data.gov.in/ ) 
这是印度政府公开数据的所在地,通过各种行业、气候、医疗保健等来寻找数据,你可以在这里找到一些灵感。根据你居住的国家的不同,你也可以从其他一些网站上浏览类似的网站。

3.WorldBank( http://data.worldbank.org/ ) 
世界银行的开放数据。该平台提供 Open Data Catalog,世界发展指数,教育指数等几个工具。

4.RBI( https://rbi.org.in/Scripts/Statistics.aspx ) 
印度储备银行提供的数据。这包括了货币市场操作、收支平衡、银行使用和一些产品的几个指标。

5.Five ThirtyEight Datasets ( https://github.com/fivethirtyeight/data ) 
Five Thirty Eight
,亦称作 538,专注与民意调查分析,政治,经济与体育的博客。该数据集为 Five ThirtyEight Datasets 使用的数据集。每个数据集包括数据,解释数据的字典和Five ThirtyEight 文章的链接。如果你想学习如何创建数据故事,没有比这个更好。

 

.大型数据集

1.Amazon WebServicesAWSdatasets 
( https://aws.amazon.com/cn/datasets/ ) 
Amazon
提供了一些大数据集,可以在他们的平台上使用,也可以在本地计算机上使用。您还可以通过EMR使用EC2Hadoop来分析云中的数据。在亚马逊上流行的数据集包括完整的安然电子邮件数据集,Google Booksn-gramNASA NEX 数据集,百万歌曲数据集等。

2.Googledatasets 
( https://cloud.google.com/bigquery/public-data/ ) 
Google
提供了一些数据集作为其 Big Query 工具的一部分。包括 GitHub 公共资料库的数据,Hacker News 的所有故事和评论。

3.Youtubelabeled Video Dataset 
( https://research.google.com/youtube8m/ ) 

几个月前,谷歌研究小组发布了YouTube上的数据集,它由800万个YouTube视频id4800个视觉实体的相关标签组成。它来自数十亿帧的预先计算的,最先进的视觉特征。 

.预测建模与机器学习数据集

1.UCI MachineLearning Repository 
( https://archive.ics.uci.edu/ml/datasets.html )
UCI
机器学习库显然是最著名的数据存储库。如果您正在寻找与机器学习存储库相关的数据集,通常是首选的地方。这些数据集包括了各种各样的数据集,从像Iris和泰坦尼克这样的流行数据集到最近的贡献,比如空气质量和GPS轨迹。存储库包含超过350个与域名类似的数据集(分类/回归)。您可以使用这些过滤器来确定您需要的数据集。

2.Kaggle
( https://www.kaggle.com/datasets )
Kaggle
提出了一个平台,人们可以贡献数据集,其他社区成员可以投票并运行内核/脚本。他们总共有超过350个数据集——有超过200个特征数据集。虽然一些最初的数据集通常出现在其他地方,但我在平台上看到了一些有趣的数据集,而不是在其他地方出现。与新的数据集一起,界面的另一个好处是,您可以在相同的界面上看到来自社区成员的脚本和问题。

3.AnalyticsVidhya 
(https://datahack.analyticsvidhya.com/contest/all/ ) 

您可以从我们的实践问题和黑客马拉松问题中参与和下载数据集。问题数据集基于真实的行业问题,并且相对较小,因为它们意味着2 – 7天的黑客马拉松。

4.Quandl
( https://www.quandl.com/ ) 
Quandl
通过起网站、API 或一些工具的直接集成提供了不同来源的财务、经济和替代数据。他们的数据集分为开放和付费。所有开放数据集为免费,但高级数据集需要付费。通过搜索仍然可以在平台上找到优质数据集。例如,来自印度的证券交易所数据是免费的。

5.Past KDDCups 
( http://www.kdd.org/kdd-cup ) 
KDD Cup
ACM Special Interest Group 组织的年度数据挖掘和知识发现竞赛。

6.DrivenData 
( https://www.drivendata.org/ ) 
Driven Data
发现运用数据科学带来积极社会影响的现实问题。然后,他们为数据科学家组织在线模拟竞赛,从而开发出最好的模型来解决这些问题。

 

.图像分类数据集

1.The MNISTDatabase
( http://yann.lecun.com/exdb/mnist/ ) 

最流行的图像识别数据集,使用手写数字。它包括6万个示例和1万个示例的测试集。这通常是第一个进行图像识别的数据集。

2.Chars74K
(http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/ ) 

这里是下一阶段的进化,如果你已经通过了手写的数字。该数据集包括自然图像中的字符识别。数据集包含74,000个图像,因此数据集的名称。

3.Frontal FaceImages
(http://vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html ) 

如果你已经完成了前两个项目,并且能够识别数字和字符,这是图像识别中的下一个挑战级别——正面人脸图像。这些图像是由CMU & MIT收集的,排列在四个文件夹中。

4.ImageNet
( http://image-net.org/ ) 

现在是时候构建一些通用的东西了。根据WordNet层次结构组织的图像数据库(目前仅为名词)。层次结构的每个节点都由数百个图像描述。目前,该集合平均每个节点有超过500个图像(而且还在增加)

 

.文本分类数据集

1.Spam – NonSpam
(http://www.esp.uem.es/jmgomez/smsspamcorpus/) 

区分短信是否为垃圾邮件是一个有趣的问题。你需要构建一个分类器将短信进行分类。

2.TwitterSentiment Analysis 
(http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/) 

该数据集包含 1578627 个分类推文,每行被标记为1的积极情绪,0位负面情绪。数据依次基于 Kaggle 比赛和 Nick Sanders 的分析。

3.Movie ReviewData 
(http://www.cs.cornell.edu/People/pabo/movie-review-data/) 

这个网站提供了一系列的电影评论文件,这些文件标注了他们的总体情绪极性(正面或负面)或主观评价(例如,两个半明星”)和对其主观性地位(主观或客观)或极性的标签。

 

.推荐引擎数据集

1.MovieLens 
( https://grouplens.org/ ) 
MovieLens
是一个帮助人们查找电影的网站。它有成千上万的注册用户。他们进行自动内容推荐,推荐界面,基于标签的推荐页面等在线实验。这些数据集可供下载,可用于创建自己的推荐系统。

2.Jester 
(http://www.ieor.berkeley.edu/~goldberg/jester-data/) 

在线笑话推荐系统。

 

.各种来源的数据集网站

1.KDNuggets
(http://www.kdnuggets.com/datasets/index.html) 
KDNuggets
的数据集页面一直是人们搜索数据集的参考。列表全面,但是某些来源不再提供数据集。因此,需要谨慎选择数据集和来源。

2.Awesome PublicDatasets
(https://github.com/caesar0301/awesome-public-datasets) 

一个GitHub存储库,它包含一个由域分类的完整的数据集列表。数据集被整齐地分类在不同的领域,这是非常有用的。但是,对于存储库本身的数据集没有描述,这可能使它非常有用。

3.RedditDatasets Subreddit 
(https://www.reddit.com/r/datasets/) 

由于这是一个社区驱动的论坛,它可能会遇到一些麻烦(与之前的两个来源相比)。但是,您可以通过流行/投票来对数据集进行排序,以查看最流行的数据集。另外,它还有一些有趣的数据集和讨论。

.结尾的话

我们希望这一资源清单对于那些想项目的人来说是非常有用的。这绝对是一个金矿,好好加以利用吧!

文章来源:机器学习算法全栈工程师

另一个公众号的推文:https://mp.weixin.qq.com/s/kLu4p51wbij9R2Jjqu23zQ

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/181272.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 毫米波雷达跟激光雷达_毫米波雷达市场

    毫米波雷达跟激光雷达_毫米波雷达市场文章目录激光雷达超声波雷达摄像头毫米波雷达激光雷达激光雷达的波长介于750nm-950nm之间,以单线或多线束机制辐射光束,接收目标或环境的反射信号,以回波时间差和波束指向测量目标的距离和角度等空间位置参数。激光雷达主要优点如下:(1)波长短,测量精度高(2)多线束的探测,可以实现对场景的三维成像。激光雷达的主要缺点是:(1)抗干扰能力低,易受天气影响,在雨雪雾等天气的作用下,激光雷达使用受限。(2)激光发射、被测目标表面粗糙等因素都对测量精度有影响。(3)结构复杂,除激光

  • 30 个重要数据结构和算法完整介绍建议保存

    30 个重要数据结构和算法完整介绍建议保存数据结构和算法(DSA)通常被认为是一个令人生畏的话题——一种常见的误解。它们是技术领域最具创新性概念的基础,对于工作/实习申请者和有经验的程序员的职业发展都至关重要。话虽如此,我决定在CSDN新星计划挑战期间将我所了解的数据结构和算法集中起来。本文旨在使DSA看起来不像人们认为的那样令人生畏。它包括15个最有用的数据结构和15个最重要的算法,可以帮助您在学习中和面试中取得好成绩并提高您的编程竞争力。后面等我还会继续对这些数据结构和算法进行进一步详细地研究讲解。

  • pojAGTC(LCS,DP)

    pojAGTC(LCS,DP)

  • pycharm如何配置anaconda环境_2022年冬奥会在哪举行

    pycharm如何配置anaconda环境_2022年冬奥会在哪举行这是2022年我自己记录的Pycharm+Anaconda配置教程,还有一些安装时遇到的疑惑浅析。

  • php stristr_str.center()方法的功能是什么

    php stristr_str.center()方法的功能是什么欢迎进入Linux社区论坛,与200万技术人员互动交流>>进入php中strstr函数的用法:strstr()函数搜索一个字符串在另一个字符串中的第一次出现的字符串。该函数返回字符串的其余部分(从匹配点)。如果未找到所搜索的字符串,则返回false.语法strstr(欢迎进入Linux社区论坛,与200万技术人员互动交流>>进入php中strstr函数的…

  • Jenkins前端打包内存溢出问题

    Jenkins前端打包内存溢出问题

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号