Pytorch实现STN

Pytorch实现STNfrom__future__importprint_functionimporttorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptimimporttorchvisionfromtorchvisionimportdatasets,transformsfromtorch.autogradimportVariableimportmatplotlib…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

Pytorch实现STN

 

即仿射变换的6个参数用网络来学

Pytorch实现STN

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np

class TPSNet(nn.Module):
    def __init__(self):
        super(TPSNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=8, kernel_size=7),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(in_channels=8, out_channels=10, kernel_size=5),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.fill_(0)
        self.fc_loc[2].bias.data = torch.FloatTensor([1, 0, 0, 0, 1, 0])

    # Spatial transformer network forward function
    def stn(self, x):
        #x是[b,1,28,28]
        xs = self.localization(x)
        #xs是[b,10,3,3]
        xs = xs.view(-1, 10 * 3 * 3)  
        #xs是[b,90]
        theta = self.fc_loc(xs) 
        #theta是[b,6]
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        #x是[b,1,28,28]
        return x

    def forward(self, x):
        # transform the input

        #x是[b,1,28,28]
        x = self.stn(x)
        #x是[b,1,28,28]
        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if use_cuda:
            data, target = data.cuda(), target.cuda()

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)  #和TPSNet中的log_softmax搭配,就是CE loss
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# A simple test procedure to measure STN the performances on MNIST.
def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            if use_cuda:
                data, target = data.cuda(), target.cuda()
            # data, target = Variable(data, volatile=True), Variable(target)
            output = model(data)

            # sum up batch loss
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # get the index of the max log-probability
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()

        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
            .format(test_loss, correct, len(test_loader.dataset),
                    100. * correct / len(test_loader.dataset)))


#可视化STN效果
def convert_image_np(inp):
    """Convert a Tensor to numpy image."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.

def visualize_stn():
    with torch.no_grad():
        # Get a batch of training data
        data, _ = next(iter(test_loader))
        # data = Variable(data, volatile=True)

        if use_cuda:
            data = data.cuda()

        input_tensor = data.cpu().data
        transformed_input_tensor = model.stn(data).cpu().data

        in_grid = convert_image_np(
            torchvision.utils.make_grid(input_tensor))

        out_grid = convert_image_np(
            torchvision.utils.make_grid(transformed_input_tensor))

        # Plot the results side-by-side
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')

        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')


plt.ion()   # interactive mode

#加载数据
use_cuda = torch.cuda.is_available()

# Training dataset
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='data/', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='data/', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])), batch_size=64, shuffle=True, num_workers=4)



model = TPSNet()
if use_cuda:
    model.cuda()


#训练模型
optimizer = optim.SGD(model.parameters(), lr=0.01)

for epoch in range(1, 20 + 1):
    train(epoch)
    test()

# Visualize the STN transformation on some input batch
visualize_stn()

plt.ioff()
plt.show()

参考

Spatial Transformer Networks Tutorial — PyTorch Tutorials 1.10.1+cu102 documentation

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/180457.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号