AUC的计算方法_auc计算器

AUC的计算方法_auc计算器一、roc曲线1、roc曲线:接收者操作特征(receiveroperatingcharacteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(falsepostiverateFPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)纵轴:真正类率(truepostiverateTPR)灵敏度,Sensitivity…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

一、roc曲线

1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。

横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)

纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率)

2针对一个二分类问题,将实例分成正类(postive)或者负类(negative)。但是实际中分类时,会出现四种情况.

(1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP)

(2)若一个实例是正类,但是被预测成为负类,即为假负类(False Negative FN)

(3)若一个实例是负类,但是被预测成为正类,即为假正类(False Postive FP)

(4)若一个实例是负类,但是被预测成为负类,即为真负类(True Negative TN)

TP:正确的肯定数目

FN:漏报,没有找到正确匹配的数目

FP:误报,没有的匹配不正确

TN:正确拒绝的非匹配数目

列联表如下,1代表正类,0代表负类:

AUC的计算方法_auc计算器

由上表可得出横,纵轴的计算公式:

(1)真正类率(True Postive Rate)TPR: TP/(TP+FN),代表分类器预测的正类中实际正实例占所有正实例的比例。Sensitivity

(2)负正类率(False Postive Rate)FPR: FP/(FP+TN),代表分类器预测的正类中实际负实例占所有负实例的比例。1-Specificity

(3)真负类率(True Negative Rate)TNR: TN/(FP+TN),代表分类器预测的负类中实际负实例占所有负实例的比例,TNR=1-FPR。Specificity

假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如0.6,概率大于等于0.6的为正类,小于0.6的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。

如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个阈值。

 AUC的计算方法_auc计算器

横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。

纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。

理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

二 如何画roc曲线

假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。

AUC的计算方法_auc计算器

接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:

 

 AUC的计算方法_auc计算器 

 

AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。

首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。

二、AUC计算  

 1.  最直观的,根据AUC这个名称,我们知道,计算出ROC曲线下面的面积,就是AUC的值。事实上,这也是在早期 Machine Learning文献中常见的AUC计算方法。由于我们的测试样本是有限的。我们得到的AUC曲线必然是一个阶梯状的。因此,计算的AUC也就是这些阶梯 下面的面积之和。这样,我们先把score排序(假设score越大,此样本属于正类的概率越大),然后一边扫描就可以得到我们想要的AUC。但是,这么 做有个缺点,就是当多个测试样本的score相等的时候,我们调整一下阈值,得到的不是曲线一个阶梯往上或者往右的延展,而是斜着向上形成一个梯形。此 时,我们就需要计算这个梯形的面积。由此,我们可以看到,用这种方法计算AUC实际上是比较麻烦的。 

   2. 一个关于AUC的很有趣的性质是,它和Wilcoxon-Mann-Witney Test是等价的。这个等价关系的证明留在下篇帖子中给出。而Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。有了这个定义,我们就得到了另外一中计 算AUC的办法:得到这个概率。我们知道,在有限样本中我们常用的得到概率的办法就是通过频率来估计之。这种估计随着样本规模的扩大而逐渐逼近真实值。这 和上面的方法中,样本数越多,计算的AUC越准确类似,也和计算积分的时候,小区间划分的越细,计算的越准确是同样的道理。具体来说就是统计一下所有的 M×N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。当二元组中正负样本的 score相等的时候,按照0.5计算。然后除以MN。实现这个方法的复杂度为O(n^2)。n为样本数(即n=M+N) 
   3.  第三种方法实际上和上述第二种方法是一样的,但是复杂度减小了。它也是首先对score从大到小排序,然后令最大score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推。然后把所有的正类样本的rank相加,再减去M-1种两个正样本组合的情况。得到的就是所有的样本中有多少对正类样本的score大于负类样本的score。然后再除以M×N。即 

AUC的计算方法_auc计算器

      公式解释:

        1、为了求的组合中正样本的score值大于负样本,如果所有的正样本score值都是大于负样本的,那么第一位与任意的进行组合score值都要大,我们取它的rank值为n,但是n-1中有M-1是正样例和正样例的组合这种是不在统计范围内的(为计算方便我们取n组,相应的不符合的有M个),所以要减掉,那么同理排在第二位的n-1,会有M-1个是不满足的,依次类推,故得到后面的公式M*(M+1)/2,我们可以验证在正样本score都大于负样本的假设下,AUC的值为1

      2、根据上面的解释,不难得出,rank的值代表的是能够产生score前大后小的这样的组合数,但是这里包含了(正,正)的情况,所以要减去这样的组(即排在它后面正例的个数),即可得到上面的公式

      另外,特别需要注意的是,再存在score相等的情况时,对相等score的样本,需要 赋予相同的rank(无论这个相等的score是出现在同类样本还是不同类的样本之间,都需要这样处理)。具体操作就是再把所有这些score相等的样本 的rank取平均。然后再使用上述公式。 

举例说明一下:

样本:y=1,y = 1, y=1, y = -1, y = -1, y = -1

模型1的预测:0.8,0.7,0.3,0.5,0.6,0.9

模型2的预测:0.1, 0.8, 0.9, 0.5, 0.85, 0.2

模型1:正样本score大于负样的对包括(y1,y4)(y1,y5)(y2,y4)(y2,y5)。所以AUC值为4/9

模型2:正样本score大于负样本的对包括(y2,y4)(y2,y6)(y3,y4)(y3,y5)(y3,y6)。所以AUC的值为5/9

所以模型2要比模型1好

这种算法的复杂度为O(n^2)其中n=(M+N)也就是样本的数量

3. 方法3跟方法2是一样的,只不过做了一些处理减小了复杂度,首先按照score进行排序,得分最大的为n,第二大的为n-1,依次类推,最小一个即为1,那么AUC的计算方法为:AUC=((正样本的排序之和)-m*(m+1)/2)/(M*N)。

看公式有点抽象,用上面的例子解释一下

模型1:首先对预测的score进行排序,排序后的样本为:负(6),正(5),正(4),负(3),负(2),正(1)

AUC的值为:((5+4+1)- 3 *(3+1)/2)/(3*3) = 4/9。可以看到跟方法二的计算结果一致,我们看一下这个计算公式,首先分子上后面的部分M*(M+1)/2。是不是很熟悉,小学就知道,上底加下底括号起来除以2,既是求梯形的面积公式,也是求连续值的公式,例如1+2+3+4。在这里指的就是所有的正样本的得分都小于所有的负样本的得分的情况下,计算出来的值。前半部分指的是实际的情况下正样本的排序。应该比较好理解了吧

参考:

http://blog.csdn.net/abcjennifer/article/details/7359370

http://www.voidcn.com/article/p-zeyyhxov-bdt.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/180131.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 简单实现微信扫码支付开发

    @文末附有开发案例代码的地址微信支付开发官方地址:https://pay.weixin.qq.com/wiki/doc/api/index.html 1. appid, 微信公众账号或开放平台APP的唯一标识 2. mch_id, 微信支付系统中的商户收款账号 3. partner, 财付通平台的商户账号 4. partnerkey, 财…

    2021年11月30日
  • Qt Quick之Canvas

    QML中的Canvas,俗称画布,它用来定义一个绘图区域,可以使用ECMAScript代码来绘制直线,矩形,贝塞尔曲线,弧线,图片,文字等图元,还可以为这些图元应用填充颜色和边框颜色,甚至还可以进行低

    2021年12月29日
  • 【Cover Letter 】SCI 投稿加分必备,手把手教你写 投稿Cover Letter

    【Cover Letter 】SCI 投稿加分必备,手把手教你写 投稿Cover LetterCoverLetter是我们投稿时,与手稿一同发送给编辑的投稿信。一封内容简洁的投稿信,会让编辑对你文章的第一印象加分不少。今天,我们一起来学习一下,一篇给文章加分的投稿信应该怎么写。投稿信的内容主要包含文章的标题、类型,没有一稿多投的声明,文章的主要内容及亮点,还有通讯作者的信息。敲黑板!一篇投稿信最重要的两点,是语言简洁和符合期刊标准。所以,要想写好投稿信,我们务必要了解各…

  • 贪吃蛇(C语言实现)

    贪吃蛇(C语言实现)文章目录游戏说明游戏效果展示游戏代码游戏代码详解游戏框架构建隐藏光标光标跳转初始化界面初始化蛇颜色设置随机生成食物打印蛇与覆盖蛇移动蛇执行按键判断得分与结束游戏主体逻辑函数从文件读取最高分更新最高分到文件主函数游戏说明游戏效果展示游戏代码游戏代码详解游戏框架构建隐藏光标光标跳转初始化界面初始化蛇颜色设置随机生成食物打印蛇与覆盖蛇移动蛇执行按键判断得分与结束游戏主体逻辑函数从文件读取最高分更新最高分到文件主函数…

  • 银行家算法-C语言实现

    银行家算法-C语言实现算法简介银行家算法(Banker’sAlgorithm)是一个避免死锁(Deadlock)的著名算法,是由艾兹格·迪杰斯特拉在1965年为T.H.E系统设计的一种避免死锁产生的算法。它以银行借贷系统的分配策略为基础,判断并保证系统的安全运行。—百度百科当一个进程申请使用资源的时候,银行家算法通过先试探分配给该进程资源,然后通过安全性算法判断分配后的系统是否处于安全状态,若不安全则试探分配作废,让该进程继续等待。安全性算法是判断分配后的系统是否会进入不安全状态,若不存在安全序列,则判定系统已经进入

  • Squid 代理服务之透明代理服务器架构搭建

    文章目录1.服务器配置2.Squid服务器部署2.1修改Squid配置文件2.2开启路由转发,实现本机中不同网段的地址转发2.3修改防火墙规则3.客户端访问测试1.服务器配置服务器主机名IP地址主要软件Squid服务器squid_server内网ens33:192.168.10.20|外网ens37:10.0.0.100squidWeb服务器web_server10.0.0.200apacheWin10客户端192.1

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号