使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」基于libonnx环境简要分析一下mnist网络算子结构,关于环境搭建可以参考前面两篇文章:xboot大神的libonnx环境搭建使用netron实现对onnx模型结构可视化本文主要目的是搞清楚mnist各层之间数据shape的变化情况,关于什么是shape,引用一本书中的介绍:”在tensorflow中,使用张量来表示计算图中的所有数据,张量在计算图的节点之间流动,张量可以看成N维数组,而数组的维数就是张量的阶数。因此,0阶张量对应标量数据,1阶张量对应一维数组,也就是向量。二阶张量对应二

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

基于libonnx环境简要分析一下mnist网络算子结构,关于环境搭建可以参考前面两篇文章:

xboot大神的libonnx环境搭建

使用netron实现对onnx模型结构可视化


本文主要目的是搞清楚mnist各层之间数据shape的变化情况,关于什么是shape,引用一本书中的介绍:

“在tensorflow中,使用张量来表示计算图中的所有数据,张量在计算图的节点之间流动,张量可以看成N维数组,而数组的维数就是张量的阶数。因此,0阶张量对应标量数据,1阶张量对应一维数组,也就是向量。二阶张量对应二维数组,也就是矩阵,以此类推,N阶张量对应n维数组,例如,一张RGB图像可以表示为3阶张量,而多张RGB图构成的数据可以表示为4阶张量。shape(形状)代表的就是张量的一种属性,当然还有其他属性,比如数据类型等等”

再算子执行前面打断点,依次观察输入数据和输出数据的大小:

(gdb) b 2124
Breakpoint 2 at 0x555555560ef8: file onnx.c, line 2124.
(gdb) display n->inputs[0]->ndata
(gdb) display n->outputs[0]->ndata
(gdb) c
Continuing.
Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 2560
2: n->outputs[0]->ndata = 2560
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 784
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 1568
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 1568
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 256
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 256
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 10
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 10
2: n->outputs[0]->ndata = 10
(gdb) c
Continuing.

可以看出一个简单的规律,就是前一级网络的输出size等于后一级网络的输入size.

对照网络,可以完全对应的上:

使用netron对mnist网络结构分析「建议收藏」

将shape打印出(由dims表示),可以看出和上图完全吻合。(图中一维向量表示为1*N,也看成2维的shape).

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 2560
2: n->outputs[0]->ndata = 2560
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 2
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 784
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 1568
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 1568
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 256
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 256
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 10
3: n->inputs[0]->ndim = 2
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 10
2: n->outputs[0]->ndata = 10
3: n->inputs[0]->ndim = 2
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

然后再以ndim为上限,索引dims,还是以reshape为例:

使用netron对mnist网络结构分析「建议收藏」

可以看出和netron解析的图中reshape模块的shape完全吻合:

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

darknet网络举例:

netron不但可以解析onnx格式的模型文件,还支持darknet中 .cfg格式的文件,比如:

使用netron对mnist网络结构分析「建议收藏」

 不过貌似N,C,W,H的排列有所差别,在上面mnist网络中,顺序是,个数X通道数X长度X高度

而darknet的cfg中,对于输出数据,是WxHxC的方式,也即是宽X长X通道号,但是对于每个算子节点,则是CXNXWXH的方式,也即是通道数在前,之后依次是个数,宽和长. N是batch size.

使用netron对mnist网络结构分析「建议收藏」

从最后一层的模型看不出它的结构,实际上它是一个全连接层:

使用netron对mnist网络结构分析「建议收藏」

这一点可以通过芯原的模型转换工具的转换结果看出来,芯原的转换工具,可以将ONNX模型转换为芯原NPU吃的json文件模型,而netron是支持此类型的可视化输出的。

以下模型是和上图同一个模型文件,转换为芯原格式的JSON模型文件后,通过NETRON分析得到的网络模型结构,可以看到,最后一层是全连接。

使用netron对mnist网络结构分析「建议收藏」


lenet 模型都需要对吃进去的图像做数据归一化,libonnx实现也不例外

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」 

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」 


结束!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/179595.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • pycharm安装包出现错误

    pycharm安装包出现错误提示:Youshouldconsiderupgradingviathe’e:\programfiles\python37\python.exe-mpipinstall–upgradepip’command.这一类问题,其实就是你的pip版本低了,只需要输入命令python-mpipinstall–upgradepip升级即可。

  • IntelliJ IDEA 整理代码格式 快捷键[通俗易懂]

    IntelliJ IDEA 整理代码格式 快捷键[通俗易懂]一、前言在开发的过程中,项目代码格式尤为重要,但是有些开发人员经常会不注意细节,导致代码阅读性很差,如下图所示:二、解决方案打开IDEA,按Ctrl+Alt+L键,进行整理代码格式,可以看到代码已经进行整理PS:如果和qq热键冲突的话,需要先将qq的热键Ctrl+Alt+L设置为无,如下图所示:…

    2022年10月12日
  • grep 正则表达式

    grep 正则表达式grep命令功能:输入文件的每一行中查找字符串。基本用法:grep[-acinv][–color=auto][-An][-Bn]'搜寻字符串'文件名参数说明:-

  • matlab画图线型、符号、颜色

    matlab画图线型、符号、颜色Matlab画图线形、颜色、数据点形状的选择1,线形-Solidline(default)–Dashedline:Dottedline-.Dash-dotline2,颜色rRedgGreenbBluecCyanmMagentayYellowkBlackwWhite3,数据点的形状+PlussignoCir…

  • windows根据端口号杀进程_如何通过端口号查看进程

    windows根据端口号杀进程_如何通过端口号查看进程Window根据端口号杀进程

  • Linux安装Tomcat9[通俗易懂]

    Linux安装Tomcat9[通俗易懂]Linux安装Tomcat91:下载安装包安装完jdk,我们需要下载tomcat了,点我跳转,这样子我们找到BinaryDistributions,下载链接.tar.gz(http://mirrors.cnnic.cn/apache/tomcat/tomcat-9/v9.0.0.M9/bin/apache-tomcat-9.0.0.M9.tar.gz)下载可以用wget

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号