字符串匹配算法综述论文_多字符串匹配

字符串匹配算法综述论文_多字符串匹配字符串匹配算法综述字符串匹配算法综述:BF、RK、KMP、BM、Sunday字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目。此算法通常输入为原字符串(string)和子串(pattern),要求返回子串在原字符串中首次出现的位置。比如原字符串为“ABCDEFG”,子串为“DEF”,则算法返回3。常见的算法包括:BF(BruteForce,暴力检索)、RK(R…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

字符串匹配算法综述

字符串匹配算法综述:BF、RK、KMP、BM、Sunday

字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目。此算法通常输入为原字符串(string)和子串(pattern),要求返回子串在原字符串中首次出现的位置。比如原字符串为“ABCDEFG”,子串为“DEF”,则算法返回3。常见的算法包括:BF(Brute Force,暴力检索)、RK(Robin-Karp,哈希检索)、KMP(教科书上最常见算法)、BM(Boyer Moore)、Sunday等,下面详细介绍。

1 BF算法:

暴力检索法是最好想到的算法,也最好实现,在情况简单的情况下可以直接使用:

这里写图片描述
首先将原字符串和子串左端对齐,逐一比较;如果第一个字符不能匹配,则子串向后移动一位继续比较;如果第一个字符匹配,则继续比较后续字符,直至全部匹配。
时间复杂度:O(MN)

2 RK算法:

RK算法是对BF算法的一个改进:在BF算法中,每一个字符都需要进行比较,并且当我们发现首字符匹配时仍然需要比较剩余的所有字符。而在RK算法中,就尝试只进行一次比较来判定两者是否相等。
RK算法也可以进行多模式匹配,在论文查重等实际应用中一般都是使用此算法。
这里写图片描述
首先计算子串的HASH值,之后分别取原字符串中子串长度的字符串计算HASH值,比较两者是否相等:如果HASH值不同,则两者必定不匹配,如果相同,由于哈希冲突存在,也需要按照BF算法再次判定。
按照此例子,首先计算子串“DEF”HASH值为Hd,之后从原字符串中依次取长度为3的字符串“ABC”、“BCD”、“CDE”、“DEF”计算HASH值,分别为Ha、Hb、Hc、Hd,当Hd相等时,仍然要比较一次子串“DEF”和原字符串“DEF”是否一致。
时间复杂度:O(MN)(实际应用中往往较快,期望时间为O(M+N))

3 KMP算法:

字符串匹配最经典算法之一,各大教科书上的看家绝学,曾被投票选为当今世界最伟大的十大算法之一;但是晦涩难懂,并且十分难以实现,希望我下面的讲解能让你理解这个算法。
KMP算法在开始的时候,也是将原字符串和子串左端对齐,逐一比较,但是当出现不匹配的字符时,KMP算法不是向BF算法那样向后移动一位,而是按照事先计算好的“部分匹配表”中记载的位数来移动,节省了大量时间。这里我借用一下阮一峰大神的例子来讲解:
这里写图片描述
首先,原字符串和子串左端对齐,比较第一个字符,发现不相等,子串向后移动,直到子串的第一个字符能和原字符串匹配。
这里写图片描述
当A匹配上之后,接着匹配后续的字符,直至原字符串和子串出现不相等的字符为止。
这里写图片描述
此时如果按照BF算法计算,是将子串整体向后移动一位接着从头比较;按照KMP算法的思想,既然已经比较过了“ABCDAB”,就要利用这个信息;所以针对子串,计算出了“部分匹配表”如下(具体如何计算后面会说,这个先介绍整个流程):
这里写图片描述
刚才已经匹配的位数为6,最后一个匹配的字符为“B”,查表得知“B”对应的部分匹配值为2,那么移动的位数按照如下公式计算:
移动位数 = 已匹配的位数 – 最后一个匹配字符的部分匹配值
那么6 – 2 = 4,子串向后移动4位,到下面这张图:
这里写图片描述
因为空格和“C”不匹配,已匹配位数为2,“B”对应部分匹配值为0,所以子串向后移动2-0=2位。
这里写图片描述
空格和“A”不匹配,已匹配位数为0,子串向后移动一位。
这里写图片描述
逐个比较,直到发现“C”与“D”不匹配,已匹配位数为6,“B”对应部分匹配值为2,6-2=4,子串向后移动4位。
这里写图片描述
逐个比较,直到全部匹配,返回结果。
下面说明一下“部分匹配表”如何计算,“部分匹配值”是指字符串前缀和后缀所共有元素的长度。前缀是指除最后一个字符外,一个字符串全部头部组合;后缀是指除第一个字符外,一个字符串全部尾部组合。以”ABCDABD”为例:
“AB”的前缀为[A],后缀为[B],共有元素的长度为0;
“ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
“ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
“ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为1;
“ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,长度为2;
“ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
在计算“部分匹配表”时,一般使用DP(动态规划)算法来计算(表示为next数组)://这里我没看懂,理论上不用DP直接搜也行啊

        int* next = new int[needle.length()];
        next[0] = 0;
        int k = 0;
        for (int i = 1; i < needle.length(); i++)
        {
            while (k > 0 && needle[i] != needle[k])
            {
                k = next[k - 1];
            }
            if (needle[i] == needle[k])
            {
                k++;
            }
            next[i] = k;
        }

时间复杂度:O(N)

4 BM算法:

在本科的时候,我一直认为KMP算法是最好的字符串匹配算法,直到后来我遇到了BM算法。BM算法的执行效率要比KMP算法快3-5倍左右,并且十分容易理解。各种记事本的“查找”功能(CTRL + F)一般都是采用的此算法。
网上所有讲述这个算法的帖子都是以传统的“好字符规则”和“坏字符规则”来讲述的,但是个人感觉其实这样不容易理解,我总结了另外一套简单的算法规则:
我们拿这个算法的发明人Moore教授的例子来讲解:
这里写图片描述
首先,原字符串和子串左端对齐,但是从尾部开始比较,就是首先比较“S”和“E”,这是一个十分巧妙的做法,如果字符串不匹配的话,只需要这一次比较就可以确定。
在BM算法中,当每次发现当前字符不匹配的时候,我们就需要寻找一下子串中是否有这个字符;比如当前“S”和“E”不匹配,那我们需要寻找一下子串当中是否存在“S”。发现子串当中并不存在,那我们将子串整体向后移动到原字符串中“S”的下一个位置(但是如果子串中存在原字符串当前字符肿么办呢,我们后面再说):
这里写图片描述
我们接着从尾部开始比较,发现“P”和“E”不匹配,那我们查找一下子串当中是否存在“P”,发现存在,那我们就把子串移动到两个“P”对齐的位置:
这里写图片描述
已然从尾部开始比较,“E”匹配,“L”匹配,“P”匹配,“M”匹配,“I”和“A”不匹配!那我们就接着寻找一下子串当前是否出现了原字符串中的字符,我们发现子串中第一个“E”和原字符串中的字符可以对应,那直接将子串移动到两个“E”对应的位置:
这里写图片描述
接着从尾部比较,发现“P”和“E”不匹配,那么检查一下子串当中是否出现了“P”,发现存在,那么移动子串到两个“P”对应:
这里写图片描述
从尾部开始,逐个匹配,发现全部能匹配上,匹配成功~
时间复杂度:最差情况O(MN),最好情况O(N)

5 Sunday算法:

后来,我又发现了一种比BM算法还要快,而且更容易理解的算法,就是这个Sunday算法:
这里写图片描述
首先原字符串和子串左端对齐,发现“T”与“E”不匹配之后,检测原字符串中下一个字符(在这个例子中是“IS”后面的那个空格)是否在子串中出现,如果出现移动子串将两者对齐,如果没有出现则直接将子串移动到下一个位置。这里空格没有在子串中出现,移动子串到空格的下一个位置“A”:
这里写图片描述
发现“A”与“E”不匹配,但是原字符串中下一个字符“E”在子串中出现了,第一个字符和最后一个字符都有出现,那么首先移动子串靠后的字符与原字符串对齐:
这里写图片描述
发现空格和“E”不匹配,原字符串中下一个字符“空格”也没有在子串中出现,所以直接移动子串到空格的下一个字符“E”:
这里写图片描述
这样从头开始逐个匹配,匹配成功!
时间复杂度:最差情况O(MN),最好情况O(N)

//实际我写好像可以是o(M+N)啊。。

代码粘一下:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
char a[10005],b[10005];//long a>long b
int c[30];//表示b串中存在的字母;不存在则为1,存在为最靠后的此字符距离尾部加一(要跳的地方) 
int la,lb;//字符串a,b的长度 
int head;//当前搜索到的头字符 
int main()
{
    scanf("%s",a);
    scanf("%s",b);//read in
    la=strlen(a);
    lb=strlen(b); 
    for(int i=0;i<=lb-1;i++)
        c[b[i]-'a'+1]=lb-i;//初始化c数组 
    for(int i=0;head<=la-1;)//i表示当前匹配长度 ,head指针跳到a尾时结束 
    {
        if(a[head+i]==b[i])
        {
            i++;//匹配则更新i值
            if(i==lb) //匹配到的长度等于b串长度 则成功 
            {
                printf("Yes");return 0;
            }
        }        
        else
        {
            if(c[a[head+lb]-'a'+1]!=0) head=head+c[a[head+lb]-'a'+1];//判断是否出现
            else head=head+lb+2; //未出现,跳到下一个长度 
            i=0;//匹配值更新为0
        }         
    }
    printf("No");
    return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/171692.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • axisfaultexception_this alias is not available

    axisfaultexception_this alias is not available出现下面情况,可以是proxy.setEndpoint(endpoint);中endpoint没有给对导致AxisFault faultCode:{http://xml.apache.org/axis/}Server.NoService faultSubcode: faultString:TheAXISenginecouldnotfindatargetservicetoinvoke! targetServiceisGetPassword1 faultActor

  • Android该系统提供的服务–Vibrator(振子)

    Android该系统提供的服务–Vibrator(振子)

    2021年12月31日
  • c cshtml html,c# – CSHTML / Razor Views的文档

    c cshtml html,c# – CSHTML / Razor Views的文档我正在努力记录我们的显示和编辑模板(作为扩展,记录我们所有的CSHTML都是有益的).话虽如此,我从未见过任何记录CSHTMLRazorViews的方法.例如,我有这个CSHTMLEditorTemplate:MoneyPicker.cshtml@modelDecimal?@{Layout=null;}@Html.TextBox(“”,ViewData.TemplateInfo.For…

  • zencart和php是什么,什么是ZenCart ZenCart有什么特点 ZenCart模板

    zencart和php是什么,什么是ZenCart ZenCart有什么特点 ZenCart模板什么是ZenCart?ZenCart有什么特点,ZenCart模板什么是ZenCart?ZenCart是免费的购物车软件-用于建立自己的网上商店,为网上销售商而设计。ZenCart是一个免费、界面友好,开放式源码的购物车软件。该软件由一些销售商、程序员、设计师和顾问们共同开发,目的就是用户能建立风格不同的电子商务系统。现有的一些解决方案过重于编程,而不是着眼于客户的需求。ZenCart把销售商…

  • 计算一段日期内的周末天数(星期六,星期日总和)(

    计算一段日期内的周末天数(星期六,星期日总和)(简介:这是计算一段日期内的周末天数(星期六,星期日总和)(的详细页面,介绍了和php,有关的知识、技巧、经验,和一些php源码等。class='pingjiaF'framebord

  • 光棍节程序员闯关秀——闲来无事玩玩儿游戏~

    光棍节程序员闯关秀——闲来无事玩玩儿游戏~告诉我没女朋友的人不学习干嘛???第一次写题解,有点激动哈咳咳~话说为什么“光棍”老得和程序员挂上钩?人家好多程序员有车子有房子有票子有漂亮老婆有可爱的孩子人生早就已经圆满了好吗?!!【正经脸】第一关:(上图后发现右下角神奇的多了一个水印原谅没见过世面的我(ಡωಡ)hiahiahia)话不多说直接查看源码。发现有个颜色被隐藏在背景色中的超链接(忽悠小孩儿呢

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号