语义分割的评价指标_语义分割数据集

语义分割的评价指标_语义分割数据集包括:像素准确率、类别像素准确率、类别平均像素准确率、交并比、平均交并比、频权交并比。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前言

现存其实已经有很多博客实现了这个代码,但是可能不完整或者不能直接用于测试集的指标计算,这里简单概括一下。

一些概念、代码参考: [1] 憨批的语义分割9——语义分割评价指标mIOU的计算

[2]【语义分割】评价指标:PA、CPA、MPA、IoU、MIoU详细总结和代码实现(零基础从入门到精通系列!)

[3] 【语义分割】评价指标总结及代码实现

混淆矩阵

语义分割的各种评价指标都是基于混淆矩阵来的。

对于一个只有背景0和目标1的语义分割任务来说,混淆矩阵可以简单理解为:

TP(1被认为是1) FP(0被认为是1)
FN(1被认为是0) TN(0被认为是0)

各种指标的计算

1. 像素准确率 PA =(TP+TN)/(TP+TN+FP+FN)

2. 类别像素准确率 CPA = TP / (TP+FP)

3. 类别平均像素准确率 MPA = (CPA1+…+CPAn)/ n

4. 交并比 IoU = TP / (TP+FP+FN) 

5. 平均交并比 MIoU = (IoU1+…+IoUn) / n

6. 频权交并比 FWIoU =  [ (TP+FN) / (TP+FP+TN+FN) ] * [ TP / (TP + FP + FN) ]

代码实现

"""
https://blog.csdn.net/sinat_29047129/article/details/103642140
https://www.cnblogs.com/Trevo/p/11795503.html
refer to https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/utils/metrics.py
"""
import numpy as np
import os
from PIL import Image
__all__ = ['SegmentationMetric']

"""
confusionMetric
P\L     P    N

P      TP    FP

N      FN    TN

"""


class SegmentationMetric(object):
    def __init__(self, numClass):
        self.numClass = numClass
        self.confusionMatrix = np.zeros((self.numClass,) * 2) # 混淆矩阵n*n,初始值全0

    # 像素准确率PA,预测正确的像素/总像素
    def pixelAccuracy(self):
        # return all class overall pixel accuracy
        # acc = (TP + TN) / (TP + TN + FP + TN)
        acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
        return acc

    # 类别像素准确率CPA,返回n*1的值,代表每一类,包括背景
    def classPixelAccuracy(self):
        # return each category pixel accuracy(A more accurate way to call it precision)
        # acc = (TP) / TP + FP
        classAcc = np.diag(self.confusionMatrix) / np.maximum(self.confusionMatrix.sum(axis=1),1)
        return classAcc

    # 类别平均像素准确率MPA,对每一类的像素准确率求平均
    def meanPixelAccuracy(self):
        classAcc = self.classPixelAccuracy()
        meanAcc = np.nanmean(classAcc)
        return meanAcc

    # MIoU
    def meanIntersectionOverUnion(self):
        # Intersection = TP Union = TP + FP + FN
        # IoU = TP / (TP + FP + FN)
        intersection = np.diag(self.confusionMatrix)
        union = np.maximum(np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(
            self.confusionMatrix), 1)
        IoU = intersection / union
        mIoU = np.nanmean(IoU)
        return mIoU

    # 根据标签和预测图片返回其混淆矩阵
    def genConfusionMatrix(self, imgPredict, imgLabel):
        # remove classes from unlabeled pixels in gt image and predict
        mask = (imgLabel >= 0) & (imgLabel < self.numClass)
        label = self.numClass * imgLabel[mask].astype(int) + imgPredict[mask]
        count = np.bincount(label, minlength=self.numClass ** 2)
        confusionMatrix = count.reshape(self.numClass, self.numClass)
        return confusionMatrix

    def Frequency_Weighted_Intersection_over_Union(self):
        # FWIOU =     [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
        freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix)
        iu = np.diag(self.confusionMatrix) / (
                np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) -
                np.diag(self.confusionMatrix))
        FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
        return FWIoU

    # 更新混淆矩阵
    def addBatch(self, imgPredict, imgLabel):
        assert imgPredict.shape == imgLabel.shape # 确认标签和预测值图片大小相等
        self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)

    # 清空混淆矩阵
    def reset(self):
        self.confusionMatrix = np.zeros((self.numClass, self.numClass))

def old():
    imgPredict = np.array([0, 0, 0, 1, 2, 2])
    imgLabel = np.array([0, 0, 1, 1, 2, 2])
    metric = SegmentationMetric(3)
    metric.addBatch(imgPredict, imgLabel)
    acc = metric.pixelAccuracy()
    macc = metric.meanPixelAccuracy()
    mIoU = metric.meanIntersectionOverUnion()
    print(acc, macc, mIoU)

def evaluate1(pre_path, label_path):
    acc_list = []
    macc_list = []
    mIoU_list = []
    fwIoU_list = []

    pre_imgs = os.listdir(pre_path)
    lab_imgs = os.listdir(label_path)

    for i, p in enumerate(pre_imgs):
        imgPredict = Image.open(pre_path+p)
        imgPredict = np.array(imgPredict)
        # imgPredict = imgPredict[:,:,0]
        imgLabel = Image.open(label_path+lab_imgs[i])
        imgLabel = np.array(imgLabel)
        # imgLabel = imgLabel[:,:,0]

        metric = SegmentationMetric(2) # 表示分类个数,包括背景
        metric.addBatch(imgPredict, imgLabel)
        acc = metric.pixelAccuracy()
        macc = metric.meanPixelAccuracy()
        mIoU = metric.meanIntersectionOverUnion()
        fwIoU = metric.Frequency_Weighted_Intersection_over_Union()

        acc_list.append(acc)
        macc_list.append(macc)
        mIoU_list.append(mIoU)
        fwIoU_list.append(fwIoU)

        # print('{}: acc={}, macc={}, mIoU={}, fwIoU={}'.format(p, acc, macc, mIoU, fwIoU))

    return acc_list, macc_list, mIoU_list, fwIoU_list

def evaluate2(pre_path, label_path):
    pre_imgs = os.listdir(pre_path)
    lab_imgs = os.listdir(label_path)

    metric = SegmentationMetric(2)  # 表示分类个数,包括背景
    for i, p in enumerate(pre_imgs):
        imgPredict = Image.open(pre_path+p)
        imgPredict = np.array(imgPredict)
        imgLabel = Image.open(label_path+lab_imgs[i])
        imgLabel = np.array(imgLabel)

        metric.addBatch(imgPredict, imgLabel)

    return metric

if __name__ == '__main__':
    pre_path = './pre_path/'
    label_path = './label_path/'

    # 计算测试集每张图片的各种评价指标,最后求平均
    acc_list, macc_list, mIoU_list, fwIoU_list = evaluate1(pre_path, label_path)
    print('final1: acc={:.2f}%, macc={:.2f}%, mIoU={:.2f}%, fwIoU={:.2f}%'
          .format(np.mean(acc_list)*100, np.mean(macc_list)*100,
                  np.mean(mIoU_list)*100, np.mean(fwIoU_list)*100))

    # 加总测试集每张图片的混淆矩阵,对最终形成的这一个矩阵计算各种评价指标
    metric = evaluate2(pre_path, label_path)
    acc = metric.pixelAccuracy()
    macc = metric.meanPixelAccuracy()
    mIoU = metric.meanIntersectionOverUnion()
    fwIoU = metric.Frequency_Weighted_Intersection_over_Union()
    print('final2: acc={:.2f}%, macc={:.2f}%, mIoU={:.2f}%, fwIoU={:.2f}%'
          .format(acc*100, macc*100, mIoU*100, fwIoU*100))

说明

1. 使用上述代码时只需修改pre_path和label_path即可。label_path是真实标签的路径,为8位图;pre_path是训练好模型后,测试集生成的分割结果的路径,也是8位图。

metric = SegmentationMetric(2) 中,2表示的是该分割图的类别总数,包含背景,需对应修改。

2. 上述给出了两种指标的计算方式。

evaluate1是对测试集中产生的每张预测图片都计算对应的各种指标,最后对所有图片的结果进行求均值;

evaluate2是把测试集中产生的每张预测图片的混淆矩阵都加在一起,成为一个整个的混淆矩阵,最后对这一个矩阵求各种指标。

3. 我的测试结果如下:

final1: acc=93.68%, macc=79.05%, mIoU=69.85%, fwIoU=89.09%
final2: acc=93.68%, macc=78.72%, mIoU=70.71%, fwIoU=88.88%

可以看到,两种计算方法的结果在PA上是相等的,因为都是 正确的像素/总像素 ,不管是先加总再除还是先除再取平均结果都是相同的;而其他指标结果值略有不同。

一般论文中使用的是第2种,当图片本身为1600×1200时,无论是直接对原图进行评估还是将其裁剪成12张400×400大小图片进行评估,第2种的计算结果相等,而第1种结果不同。

4. 如果要打印每个类别的IoU或PA,在对应方法中返回即可。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/171679.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ideatomcat日志乱码_tomcat 日志

    ideatomcat日志乱码_tomcat 日志1、tomacat日志有三个地方,分布时Output(控制台)、TomcatLocalhostLog(tomcat本地日志)、TomcatCatalinaLog。启动日志和大部分报错日志、普通日志都在output打印;有些错误日志,在TomcatLocalhostLog。三个日志显示区,都可能出现乱码现象。2、解决方案一:首先,找到本地tomcat的conf目录下的logging.properties,这个文件中有5个编码的位置1)对于控制台output报错的情况,将下图位置

  • 像素填充率

    像素填充率像素填充率

  • 永恒之蓝漏洞原理分析_永恒之蓝是谁激活成功教程的

    永恒之蓝漏洞原理分析_永恒之蓝是谁激活成功教程的本文转自行云博客https://www.xy586.top/文章目录摘要前提需要原理漏洞利用摘要什么是永恒之蓝永恒之蓝(EternalBlue)爆发于2017年4月14日晚,是一种利用Windows系统的SMB协议漏洞来获取系统的最高权限,以此来控制被入侵的计算机。甚至于2017年5月12日,不法分子通过改造“永恒之蓝”制作了wannacry勒索病毒,使全世界大范围内遭受了该勒索病毒,甚至波及到学校、大型企业、政府等机构,只能通过支付高额的赎金才能恢复出文件。不过在该病毒出来不久就被微软通.

    2022年10月17日
  • 提升苹果电脑速度的10个小技巧[通俗易懂]

    提升苹果电脑速度的10个小技巧[通俗易懂]众所周知,随着时间的流逝,包括Mac在内的所有计算机的速度都会降低。除了换电脑,还是有许多简单的调整可以提高计算机的性能并加快运行速度较慢的Mac,而且这些调整不会花费一分钱。1.升级macOS许多人仍然相信操作系统升级的神话总是会降低计算机的速度。尽管有时它们在旧Mac可能会出现性能问题,但这些更新通常弊大于利。它们包括错误修复,修补程序和改进,这些改进通常会提高Mac的速度。这些操作系统更新文件可能很大。因此,如果硬盘驱动器空间不足,则可能需要先释放硬盘空间。2.释放硬盘空间当您的存储驱动器达到其

  • BP神经网络原理推导

    BP神经网络原理推导本文会完成BP神经网络的推导过程,先介绍BP神经网络的历史,然后介绍BP神经网络的结构,然后再开始推导,最后介绍BP神经网络的优缺点以及几个优化的方法。

  • 文本挖掘实例[通俗易懂]

    文本挖掘实例[通俗易懂]文本挖掘junjun2016年2月4日文本分析的应用越来越广泛,今天就讲讲关于评论数据的那点事。评论数据的获取:一般通过网络爬虫的方式抓取各大网站的评论数据,本次分析数据就来源于携程网某酒店的评论,成功爬取该酒店的评论数据,于是我开始使用这些数据做相关的分析。(注意:数据分析、挖掘时,这部分工作可以有专门的人员来完成)1、加载数据和包#1)本文使

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号