逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值

逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值1、简单介绍         一个方阵A如果满足,则A可逆,且

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一、计算思路

              一个方阵 A 如果满足逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值,则A可逆, 且

                                                 逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值   

              由上面公式可以知道,我们只需求出 A 的伴随阵及A对应的行列式的值即可求出方阵A的

       逆矩阵。下面将分别实现这两个部分。

二、具体实现

       1、计算矩阵A对应的行列式的值

                     引入一个定理: 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式

        乘积之和

                上面定理中提到了代数余子式,其实这个概念很简单。在n阶行列式中位于 (i,  j) 的元素逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值

         代数余子式就是将该元素所在的第i行和第j列划掉后,留下来的n-1阶行列式叫做逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值的余子式,

                 记作逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值。记

    逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值

             逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值叫做元逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值的代数余子式。

                       根据上面这些我们就可以写出 计算矩阵对应的行列式的值的算法了。                                                                         

private static double getValueOfDeterminant(double[][] data) { if(data.length == 1) { return data[0][0]; } if(data.length == 2) { return data[0][0] * data[1][1] - data[0][1] * data[1][0]; } double valueOfDeterminant = 0; double[] elementsMultiplyItsCofactor = new double[data[0].length]; for(int j=0; j<data[0].length; j++) { double cofactorValue = getValueOfDeterminant(getCofactor(data, 0, j)); if(j % 2 == 0) { elementsMultiplyItsCofactor[j] = data[0][j] * cofactorValue; } else { elementsMultiplyItsCofactor[j] = -1 * data[0][j] * cofactorValue; } valueOfDeterminant += elementsMultiplyItsCofactor[j]; } return valueOfDeterminant; }

                       函数 getValueOfDeterminant 中用到了一个函数 getCofactor , 这个函数很简单,就是    

         用来获取矩阵中矩阵A中(i, j)元逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值的余子式的。              

                         

      2、计算获取矩阵A的伴随阵并求逆矩阵

                 伴随阵的定义: 行列式|A|的各个元素的代数余子式逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值 所构成的如下矩阵

                                                             逆矩阵的伴随阵的求法_伴随矩阵与原矩阵的特征值

                 分别计算矩阵A中每个元素的代数余子式,并除以|A|,即可获得矩阵A的逆矩阵.

                 主要代码如下:                     

public static double[][] getMatrixInversion(double[][] data) { //the matrix has no inverse matrix if(data.length != data[0].length) { return new double[][]{}; } //Get value of determinant for the matrix double valueOfDeterminant = getValueOfDeterminant(data);   if(valueOfDeterminant == 0) { //The matrix doesn't have inversion matrix return new double[][]{}; } //Get inversion of the matrix inputed double[][] inversion = new double[data.length][data[0].length]; for(int i=0; i<inversion.length; i++) { for(int j=0; j<inversion[0].length; j++) { double num = getValueOfDeterminant(getCofactor(data, i, j)); if( (i + j) % 2 == 0 ) { inversion[j][i] = num / valueOfDeterminant; } else { inversion[j][i] = -1 * num / valueOfDeterminant; } } } return inversion; }                               

                通过伴随阵来求逆矩阵效率不太高,接下来将会尝试用LU分解法来求解逆矩阵。

 

        3. 后记      

                     后面的文章里讲到了 LU分解求线性方程组 Ax=b。很明显,只要将这里的 矩阵 b 替换成

         与A同型的单位矩阵E,则该线性方程组的解x就是 矩阵A的逆矩阵了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/171659.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 图像滤镜艺术—保留细节的磨皮滤镜之PS实现

    图像滤镜艺术—保留细节的磨皮滤镜之PS实现本文介绍了一种极为简单的PS磨皮实现过程,这个过程将有对应的程序实现,效果也将一模一样,这里跟大家分享一下!

  • Jasypt 加密-引言「建议收藏」

    Jasypt 加密-引言「建议收藏」Jasypt也即JavaSimplifiedEncryption是Sourceforge.net上的一个开源项目。在当地时间11月23号的通告中,Jasypt1.4的新特征包括:加密属性文件(encryptablepropertiesfiles)、SpringFramework集成、加密Hibernate数据源配置、新的命令行工具、URL加密的Apachewicket集成以及升级文档。根据Jasypt文档,该技术可用于加密任务与应用程序,例如加密密码、敏感信息和数据通信、创建完整检查数据

  • tty是啥_linuxtty中文

    tty是啥_linuxtty中文1.gcctbzftp: ftp://ftp.int.ru/pub/FreeBSD/ports/i386/packages-8-stable/lang/2.mountcdrom:mount/dev/hdc/mnt/cdrom InstallttylinuxinVritualBox1.downloadhttp://ttylinux.net/Downlo…

  • vuejs生命周期函数(什么是vue的生命周期)

    用Vue框架,熟悉它的生命周期可以让开发更好的进行。首先先看看官网的图,详细的给出了vue的生命周期:它可以总共分为8个阶段:beforeCreate(创建前),created(创建后),beforeMount(载入前),mounted(载入后),beforeUpdate(更新前),updated(更新后),beforeDestroy(销毁前),de

  • 如何查看mac系统是32位还是64位的操作系统

    如何查看mac系统是32位还是64位的操作系统

  • 解决opacity属性在低版本IE浏览器下失效的方法

    解决opacity属性在低版本IE浏览器下失效的方法以前,一直都以为ie9以下的版本不支持opacity属性。所以就同时使用opacity和ie独特的filter蒙版。但是有些时候需要一些动态的效果,就比如层的渐渐消失,隐藏,就需要使用动态变化的opacity,这种情况下,同时使用opacity和filter就显的有点麻烦了。其实,只使用opacity+jquery就完全解决这个问题。用法如下:<scripttype…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号