求逆矩阵的方法「建议收藏」

求逆矩阵的方法「建议收藏」一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。适合编程的求逆矩阵的方法如下:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。
适合编程的求逆矩阵的方法如下:
1、对可逆矩阵A进行QR分解:A=QR
2、求上三角矩阵R的逆矩阵
3、求出A的逆矩阵:A^(-1)=R^(-1)Q^(H)
以上三步都有具体的公式与之对应,适合编程实现。
C语言实现代码:

#include <stdio.h>
#include <math.h>

#define SIZE 8

double b[SIZE][SIZE]={
  
  0};//应该读作“贝尔塔”,注释中用B表示
double t[SIZE][SIZE]={
  
  0};//求和的那项
double Q[SIZE][SIZE]={
  
  0};//正交矩阵
double QH[SIZE][SIZE]={
  
  0};//正交矩阵的转置共轭
double R[SIZE][SIZE]={
  
  0};//
double invR[SIZE][SIZE]={
  
  0};//R的逆矩阵
double invA[SIZE][SIZE]={
  
  0};//A的逆矩阵,最终的结果
//={0};//
double matrixR1[SIZE][SIZE]={
  
  0};
double matrixR2[SIZE][SIZE]={
  
  0};

//double init[3][3]={3,14,9,6,43,3,6,22,15};
double init[8][8]={  
    0.0938  ,  0.5201 ,   0.4424  ,  0.0196  ,  0.3912  ,  0.9493 ,   0.9899  ,  0.8256,
    0.5254  ,  0.3477 ,   0.6878  ,  0.3309 ,   0.7691  ,  0.3276 ,   0.5144  ,  0.7900,
    0.5303  ,  0.1500 ,   0.3592  ,  0.4243 ,   0.3968  ,  0.6713 ,   0.8843  ,  0.3185,
    0.8611  ,  0.5861 ,   0.7363  ,  0.2703 ,   0.8085  ,  0.4386 ,   0.5880  ,  0.5341,
    0.4849  ,  0.2621 ,   0.3947  ,  0.1971 ,   0.7551  ,  0.8335 ,   0.1548  ,  0.0900,
    0.3935  ,  0.0445 ,   0.6834  ,  0.8217 ,   0.3774  ,  0.7689 ,   0.1999  ,  0.1117,
    0.6714  ,  0.7549 ,   0.7040  ,  0.4299 ,   0.2160  ,  0.1673 ,   0.4070  ,  0.1363,
    0.7413  ,  0.2428 ,   0.4423  ,  0.8878 ,   0.7904  ,  0.8620 ,   0.7487  ,  0.6787
};
/*/ 函数名:int main() 输入: 输出: 功能:求矩阵的逆 pure C language 首先对矩阵进行QR分解之后求上三角矩阵R的逆阵最后A-1=QH*R-1,得到A的逆阵。 作者:HLdongdong *//////////////////////////////////////////////////////////////////////
int main()
{
    int i;//数组 行
    int j;//数组 列
    int k;//代表B的角标
    int l;//数组 列
    double dev;
    double numb;//计算的中间变量
    double numerator,denominator;
    double ratio;
    /////////////////求B/////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            b[j][i]=init[j][i];
        }
        for(k=0;k<i;++k)
        {
            if(i)
            {
                numerator=0.0;
                denominator=0.0;
                for(l=0;l<SIZE;++l)
                {
                    numerator+=init[l][i]*b[l][k];
                    denominator+=b[l][k]*b[l][k];
                }
                dev=numerator/denominator;
                t[k][i]=dev;
                for(j=0;j<SIZE;++j)
                {
                    b[j][i]-=t[k][i]*b[j][k];//t init =0 !!!
                }
            }
        }
    }
    ///////////////////对B单位化,得到正交矩阵Q矩阵////////////////////
    for(i=0;i<SIZE;++i)
    {
        numb=0.0;
        for(j=0;j<SIZE;++j)
        {
            numb+=(b[j][i]*b[j][i]);
        }
        dev=sqrt(numb);
        for(j=0;j<SIZE;++j)
        {
            Q[j][i]=b[j][i]/dev;
        }
        matrixR1[i][i]=dev;
    }
    /////////////////////求上三角R阵///////////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            if(j<i)
            {
                matrixR2[j][i]=t[j][i];
            }
            else if(j==i)   
            {
                matrixR2[j][i]=1;
            }
            else
            {
                matrixR2[j][i]=0;
            }
        }
    }
    mulMatrix(matrixR1,matrixR2,SIZE,SIZE,SIZE,R);
///////////////////////QR分解完毕//////////////////////////
    printf("QR分解:\n");
    printf("Q=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f ",Q[i][j]);
        // 
        }
        printf("\n");
    }
    printf("R=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f ",R[i][j]);
        // 
        }
        printf("\n");
    }
/////////////////////求R的逆阵//////////////////////////
    for(i=SIZE-1;i>=0;--i)
    {
        invR[i][i]=1/R[i][i];
        //R[i][i]=invR[i][i];
        if(i!=(SIZE-1))//向右
        {
            for(j=i+1;j<SIZE;++j)
            {
                invR[i][j]=invR[i][j]*invR[i][i];
                R[i][j]=R[i][j]*invR[i][i];
            }
        }
        if(i)//向上
        {
            for(j=i-1;j>=0;--j)
            {
                ratio=R[j][i];
                for(k=i;k<SIZE;++k)
                {
                    invR[j][k]-=ratio*invR[i][k];
                    R[j][k]-=ratio*R[i][k];
                }
            }   
        }
    }

///////////////////////////////////////////////////////

    printf("inv(R)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f ",invR[i][j]);
        // 
        }
        printf("\n");
    }
////////////////////结果和MATLAB差一个负号,神马鬼????????/////////////////////
/////////////////////求QH//////////////////////////
    for(i=0;i<SIZE;++i)//实矩阵就是转置
    {
        for(j=0;j<SIZE;++j)
        {
            QH[i][j]=Q[j][i];
        }
    }
///////////////////////求A的逆阵invA/////////////////////////////

    mulMatrix(invR,QH,SIZE,SIZE,SIZE,invA);

    printf("inv(A)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f ",invA[i][j]);
        // 
        }
        printf("\n");
    }

///////////////////////结果与MATLAB的结果在千分位后有出入,但是负号都是对的^v^///////////////////////////
    return 0;
}

另附上矩阵乘法的子函数

/*/
函数名:void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
输入:依次是 左矩阵,右矩阵,左矩阵高度,左矩阵宽度,右矩阵宽度,输出矩阵
输出:
功能:矩阵乘法
作者:HLdongdong
*//
void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
{
 int i,j,k;
 for(i=0;i<high1;++i)
 { 
   
 for(j=0;j<weight2;j++)
 { 
   
 for(k=0;k<weight;++k)
 { 
   
 mulMatrixOut[i][j]+=matrix1[i][k]*matrix2[k][j];
 }
 }
 }
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/171646.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 质量控制点的设置_质量控制的五个要点

    质量控制点的设置_质量控制的五个要点(1)质量控制点是指对工程的性能、安全、寿命、可靠性等有严重影响的关键部位或对下道工序有严重影响的关键工序。(2)质量控制点的确定原则一般为:1)施工过程中关键工序或环节,如电气装置的高压电器和电

  • Intellij IDEA 安装lombok及使用详解

    Intellij IDEA 安装lombok及使用详解项目中经常使用bean,entity等类,绝大部分数据类类中都需要get、set、toString、equals和hashCode方法,虽然eclipse和idea开发环境下都有自动生成的快捷方式,但自动生成这些代码后,如果bean中的属性一旦有修改、删除或增加时,需要重新生成或删除get/set等方法,给代码维护增加负担。而使用了lombok则不一样,使用了lombok的注解(@Setter,@Getter,@ToString,@@RequiredArgsConstructor,@EqualsAndHas

  • 不是单组分组函数

    不是单组分组函数问题:一:SELECT tablespace_name, SUM(bytes) freeFROM dba_free_space不是单组分组函数原因: 1、如果程序中使用了分组函数,则有两种情况可以使用:程序中存在group by,并指定了分组条件,这样可以将分组条件一起查询出来改为:  SELECT tablespace_name, SUM(bytes) freeFROM dba_free_spa…

  • 【centos7 + MySQL5.7 安装】centos7 安装MySQL5.7

    【centos7 + MySQL5.7 安装】centos7 安装MySQL5.7说明:我们安装MySQL位置在/usr/local下第一步、下载MySQL安装包:[root@localhostlocal]#wgethttps://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm安装mysql安装源:[root@localhostlocal]#yum-ylocali…

  • c# 反射调用

    c#反射调用反射加载DLLAssemblyassembly=Assembly.Load("Ant.DB.SQLServer");//加载方式一:dll文件名(当前目录)

    2021年12月13日
  • rabbitmq异步处理_怎么解决js异步方法执行顺序

    rabbitmq异步处理_怎么解决js异步方法执行顺序RabbitMQ即一个消息队列,主要是用来实现应用程序的异步和解耦,同时也能起到消息缓冲,消息分发的作用。使用RabbitMQ实现异步更新文章浏览量,提升阅读文章时的响应速度。从直接更新数据库耗时450ms到异步更新数据库耗时50ms,明显提升接口性能,非常的nice~………

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号