卷积神经网络的网络结构_典型卷积神经网络结构

卷积神经网络的网络结构_典型卷积神经网络结构GoogLeNet原文地址:GoingDeeperwithConvolutions:https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdfGoogLeNet在2014年由ChristianSzegedy提出,它是一种全新的深度学习结构。GoogLeNet网络的主要创新点在于:提出Inception结构在多个尺寸上同时进行卷积再聚合;

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

GoogLeNet网络简介

GoogLeNet原文地址:Going Deeper with Convolutions:https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
在这里插入图片描述

GoogLeNet在2014年由Christian Szegedy提出,它是一种全新的深度学习结构。

GoogLeNet网络的主要创新点在于:

  1. 提出Inception结构在多个尺寸上同时进行卷积再聚合;
    在这里插入图片描述

  2. 使用1X1的卷积进行降维以及映射处理;

  3. 添加两个辅助分类器帮助训练;
    辅助分类器是将中间某一层的输出用作分类,并按一个较小的权重加到最终分类结果中。

  4. 使用平均池化层代替全连接层,大大减少了参数量。

GoogLeNet网络结构

GoogLeNet的完整网络结构如下所示:
在这里插入图片描述
下面我们将其逐层拆分讲解并结合代码分析

Inception之前的几层结构

在进入Inception结构之前,GoogLeNet网络先堆叠了两个卷积(实则3个,有一个1X1的卷积)和两个最大池化层。

在这里插入图片描述

# input(3,224,224)
self.front = nn.Sequential(
    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),   # output(64,112,112)
    nn.ReLU(inplace=True),

    nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True),    # output(64,56,56)

    nn.Conv2d(64,64,kernel_size=1),
    nn.Conv2d(64,192,kernel_size=3,stride=1,padding=1),     # output(192,56,56)
    nn.ReLU(inplace=True),

    nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True),    # output(192,28,28)
)

Inception结构

在这里插入图片描述

Inception模块只会改变特征图的通道数,而不会改变尺寸大小。

Inception结构相对复杂,我们重新创建一个类来构建此结构,并通过参数不同的参数来控制各层的通道数。

class Inception(nn.Module):
    ''' in_channels: 输入通道数 out1x1:分支1输出通道数 in3x3:分支2的3x3卷积的输入通道数 out3x3:分支2的3x3卷积的输出通道数 in5x5:分支3的5x5卷积的输入通道数 out5x5:分支3的5x5卷积的输出通道数 pool_proj:分支4的最大池化层输出通道数 '''
    def __init__(self,in_channels,out1x1,in3x3,out3x3,in5x5,out5x5,pool_proj):
        super(Inception, self).__init__()

        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, out1x1, kernel_size=1),
            nn.ReLU(inplace=True)
        )
        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels,in3x3,kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in3x3,out3x3,kernel_size=3,padding=1),
            nn.ReLU(inplace=True)
        )
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, in5x5, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in5x5, out5x5, kernel_size=5, padding=2),
            nn.ReLU(inplace=True)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3,stride=1,padding=1),
            nn.Conv2d(in_channels,pool_proj,kernel_size=1),
            nn.ReLU(inplace=True)
        )

    def forward(self,x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1,branch2,branch3,branch4]
        return torch.cat(outputs,1)	# 按通道数叠加

Inception3a模块

在这里插入图片描述

# input(192,28,28)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)		# output(256,28,28)

Inception3b + MaxPool

在这里插入图片描述

# input(256,28,28)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)		# output(480,28,28)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)			# output(480,14,14)

Inception4a

在这里插入图片描述

# input(480,14,14)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)		# output(512,14,14)

Inception4b

在这里插入图片描述

# input(512,14,14)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)		# output(512,14,14)

Inception4c

在这里插入图片描述

# input(512,14,14)
self.inception4c = Inception(512, 160, 112, 224, 24, 64, 64)		# output(512,14,14)

Inception4d

在这里插入图片描述

# input(512,14,14)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)		# output(528,14,14)

Inception4e+MaxPool

在这里插入图片描述

# input(528,14,14)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)	# output(832,14,14)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)		# output(832,7,7)

Inception5a

在这里插入图片描述

# input(832,7,7)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)		# output(832,7,7)

Inception5b

在这里插入图片描述

# input(832,7,7)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)		# output(1024,7,7)

Inception之后的几层结构

在这里插入图片描述

辅助分类模块

除了以上主干网络结构以外,GoogLeNet还提供了两个辅助分类模块,用于将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果。

与Inception模块一样,我们也重新创建一个类来搭建辅助分类模块结构。

class AccClassify(nn.Module):
	# in_channels: 输入通道
	# num_classes: 分类数
    def __init__(self,in_channels,num_classes):
        self.avgpool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = nn.MaxPool2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
        self.relu = nn.ReLU(inplace=True)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self,x):
        x = self.avgpool(x)
        x = self.conv(x)
        x = self.relu(x)
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        x = self.fc2(x)

        return x

辅助分类模块1

第一个中间层输出位于Inception4a之后,将Inception4a的输出经过平均池化,1X1卷积和全连接后等到分类结果。
在这里插入图片描述

self.acc_classify1 = AccClassify(512,num_classes)

辅助分类模块2

在这里插入图片描述

self.acc_classify2 = AccClassify(528,num_classes)

整体网络结构

pytorch搭建完整代码

""" #-*-coding:utf-8-*- # @author: wangyu a beginner programmer, striving to be the strongest. # @date: 2022/7/5 18:37 """
import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
    def __init__(self,num_classes=1000,aux_logits=True):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        # input(3,224,224)
        self.front = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),   # output(64,112,112)
            nn.ReLU(inplace=True),

            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True),    # output(64,56,56)

            nn.Conv2d(64,64,kernel_size=1),
            nn.Conv2d(64,192,kernel_size=3,stride=1,padding=1),     # output(192,56,56)
            nn.ReLU(inplace=True),

            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True),    # output(192,28,28)
        )

        # input(192,28,28)
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)  # output(64+128+32+32=256,28,28)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)  # output(480,28,28)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)  # output(480,14,14)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)  # output(512,14,14)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)  # output(512,14,14)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)  # output(512,14,14)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)  # output(528,14,14)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)  # output(832,14,14)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)  # output(832,7,7)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)  # output(832,7,7)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)  # output(1024,7,7)

        if self.training and self.aux_logits:
            self.acc_classify1 = AccClassify(512,num_classes)
            self.acc_classify2 = AccClassify(528,num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1,1))        # output(1024,1,1)
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024,num_classes)


    def forward(self,x):
        # input(3,224,224)
        x = self.front(x)       # output(192,28,28)

        x= self.inception3a(x)  # output(256,28,28)
        x = self.inception3b(x)
        x = self.maxpool3(x)

        x = self.inception4a(x)

        if self.training and self.aux_logits:
            classify1 = self.acc_classify1(x)

        x = self.inception4b(x)
        x = self.inception4c(x)
        x = self.inception4d(x)

        if self.training and self.aux_logits:
            classify2 = self.acc_classify2(x)

        x = self.inception4e(x)
        x = self.maxpool4(x)

        x = self.inception5a(x)
        x = self.inception5b(x)

        x = self.avgpool(x)
        x = torch.flatten(x,dims=1)
        x = self.dropout(x)
        x= self.fc(x)

        if self.training and self.aux_logits:
            return x,classify1,classify2

        return x


class Inception(nn.Module):
    ''' in_channels: 输入通道数 out1x1:分支1输出通道数 in3x3:分支2的3x3卷积的输入通道数 out3x3:分支2的3x3卷积的输出通道数 in5x5:分支3的5x5卷积的输入通道数 out5x5:分支3的5x5卷积的输出通道数 pool_proj:分支4的最大池化层输出通道数 '''
    def __init__(self,in_channels,out1x1,in3x3,out3x3,in5x5,out5x5,pool_proj):
        super(Inception, self).__init__()

        # input(192,28,28)
        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, out1x1, kernel_size=1),
            nn.ReLU(inplace=True)
        )
        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels,in3x3,kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in3x3,out3x3,kernel_size=3,padding=1),
            nn.ReLU(inplace=True)
        )
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, in5x5, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in5x5, out5x5, kernel_size=5, padding=2),
            nn.ReLU(inplace=True)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3,stride=1,padding=1),
            nn.Conv2d(in_channels,pool_proj,kernel_size=1),
            nn.ReLU(inplace=True)
        )

    def forward(self,x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1,branch2,branch3,branch4]
        return torch.cat(outputs,1)


class AccClassify(nn.Module):
    def __init__(self,in_channels,num_classes):
        self.avgpool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = nn.MaxPool2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
        self.relu = nn.ReLU(inplace=True)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self,x):
        x = self.avgpool(x)
        x = self.conv(x)
        x = self.relu(x)
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        x = self.fc2(x)

        return x

# print(GoogLeNet())

结构图

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170439.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 忽略证书验证的CloseableHttpClient[通俗易懂]

    项目里需要忽略证书访问,在网上查了,大部分回答都是复制粘贴的,并且也没有什么结果。自己看看源码,现在把创建忽略证书的CloseableHttpClient的方法共享下publicCloseableHttpClientgetIgnoeSSLClient()throwsException{SSLContextsslContext=SSLContexts.cu

  • Eclipse代码自动补全设置

    Eclipse代码自动补全设置Eclipse代码自动补全设置代码自动补全设置一、Window(窗口)→Perferences(选项设置)二、Java→Editor(编辑)→ContentAssist(内容辅助/代码提示)三、在AutoactivationtriggersforJava框中粘贴上“qwertyuioplkjhgfdsazxcvbnm”完成了,若文章对你有帮助,点个赞呗!代码自动补全设置大家如果经常使用Eclipse编写代码,那这篇文章对大家还是有所用处的。在这里我就教一下大家怎么设置E

  • Fiddler+夜神模拟器进行APP抓包

    Fiddler+夜神模拟器进行APP抓包Fiddler+夜神模拟器进行APP抓包作者:霞落满天需求:对公司APP进行抓包获取详细的接口信息,这是现在开发必备的。工具:Fiddler抓包,夜神模拟器模拟手机安装APP1.下载Fiddlerhttps://www.telerik.com/download/fiddlerFiddler正是在这里帮助您记录计算机和Internet之间传递的所有HTTP和HTTPS通信…

  • 技术文章收集_技术博客

    技术文章收集_技术博客http://www.mianwww.com/html/category/company-list/ibmIT公司面试手册http://www.miansou.com/news.html面试经验搜索http://www.ucdchina.com/专业UED设计网站http://blog.zhaojie.me/老赵新博客地址htt…

  • C语言if语句的基本用法

    C语言if语句的基本用法C语言if语句的基本用法一、if…1.一般形式:if(表达式){语句;}表达式:a,用非0值表示真,用0表示真;b,if(flag)相当于if(1==flag)c,浮点数无法与0比较,只能用近似的值比较;例:(1e-6)相当于1×10的-6次方;2.用于单分支选择结构;3.如含有交叉关系,使用并列的if语句;例:输出两个整数中的最大值#inclu…

  • 【java并发编程】底层原理——用户态和内核态的区别

    【java并发编程】底层原理——用户态和内核态的区别一、背景–线程状态切换的代价java的线程是映射到操作系统原生线程之上的,如果要阻塞或唤醒一个线程就需要操作系统介入,需要在户态与核心态之间切换,这种切换会消耗大量的系统资源,因为用户态与内核态都有各自专用的内存空间,专用的寄存器等,用户态切换至内核态需要传递给许多变量、参数给内核,内核也需要保护好用户态在切换时的一些寄存器值、变量等,以便内核态调用结束后切换回用户态继续工作。synch…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号