五段式流水线_cpu流水线工作原理

五段式流水线_cpu流水线工作原理一.实验目的:1.使用verilog语言写一个CPU。包含老师给的指令,并且在此基础上加入自己的想法。把之前学过的知识都用上,尽量学会design一个东西,而不仅仅是把老师的代码修改。学习写cpu,为之后的提升打基础,比如学习编译原理的时候可以试着自己做一个编译器;学习操作系统的时候可以在cpu的基础上写一个操作系统;学习嵌入式电路的时候可以自己写一些驱动。所以学习写cpu只是打开了一扇窗,把

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

这个流水线应该是我大二上的时候的最高水平了,现在看起来确实很简单,代码风格也不是很好,没有模块化,而且这些指令也不是严格的mips的所有指令,是自己定义的一些。但是放在博客里也算是对自己过去的一个总结吧!

现在再看这个代码,我觉得写得太恶心了,没有注释,没有说清楚关键的地方。我自己都忘了为什么这么写~~

后来发现有非常坑爹的Bug!!!!祝好!!!我没有改过来了~~~

• 实验步骤

1.先写好CPU的指令集。

 五段式流水线_cpu流水线工作原理

     五段式流水线_cpu流水线工作原理

         五段式流水线_cpu流水线工作原理 

2.根据指令集先把一些基本的指令实现,比如LOAD,STORE等,把大概的流水线先画出框图。画出框图后,把基本指令实现。调试,仿真。

      五段式流水线_cpu流水线工作原理

3.在2的基础上加入别的指令,考虑好hazard的问题

五段式流水线_cpu流水线工作原理

4.优化代码代码,调试,simulation。

 

• 实验原理

流水线是数字系统中一种提高系统稳定性和工作速度的方法,广泛应用于高档CPU的架构中。根据MIPS处理器的特点,将整体的处理过程分为取指令(IF)、指令译码(ID)、执行(EX)、存储器访问(MEM)和寄存器会写(WB)五级,对应多周期的五个处理阶段。一个指令的执行需要5个时钟周期,每个时钟周期的上升沿来临时,此指令所代表的一系列数据和控制信息将转移到下一级处理。

流水线寄存器负责将流水线的各部分分开,共有IF/ID、ID/EX、EX/MEM、MEM/WB四组。根据前面的介绍可知,四组流水线寄存器要求不完全相同,因此设计也有不同考虑。

(1)EX/MEM、MEM/WB两组流水线寄存器只是普通寄存器。

(2)当流水线发生数据跳转时,需清空ID/EX流水线寄存器而插入一个气泡,因此ID/EX流水线寄存器是一个带同步清零功能的寄存器。

需要注意的是,由于仿真对初始值的要求,上述寄存器都应考虑有reset信号的接入,以提供仿真时各寄存器的初值。

 

流水线:

 

             取址:处理器从指令存储器中读取指令

 

             译码:处理器从寄存器文件中读取源操作数并对指令译码产生控制信号

 

              执行:处理器使用ALU执行计算   

 

              存储器访问:处理器从数据存储器中读取或者写入数据

 

              写回:若是LOAD指令,将结果写回寄存器文件。

 

     >>加、减电路的设计考虑

减法、比较及部分分支指令(BN、BNE等)均可用加法器和必要的辅助电路来实现。对ALU来说,它的两个操作数输入时都已经是补码形式,当要完成两个操作数的减法时,即A-B补,可将减法转换为加法,利用加法器来实现:

›A-B= A+(-B)= A+(B)= A+B补)反+1

加法器完成的功能为:

sum=A+~B+1即可完成加减运算。

由于32位加法器的运算速度影响着CPU频率的高低,因此设计一个高速加法器尤为重要,本实验采用的是超前进位加法器,不过弄出来的速度比不过描述级语言写出的加法,所以后来加法就改成直接加了。

比较电路的设计考虑

对于比较运算,如果最高为不同,即A[31]B[31],则根据A[31]B[31]决定比较结果,但应注意有符号数和无符号数比较运算的区别。

①在有符号数比较SLT运算中,判断A<B的方法为:

A为负数、B0或正数:A[15]&&(~B[15])

AB符号相同,A-B为负:(A[15]~^B[15]) && sum[15]

SLTResult=(A[15]&&(~B[15])) ||( (A[15]~^B[15]) && sum[15])

②在无符号数比较SLT运算中,判断A<B的方法为:

A最高位为0B最高位为1(~A[15] )&&B[15]

AB最高位相同,A-B为负:(A[15]~^B[15]) && sum[15]

SLTResult=((~A[15] )&&B[15]) ||( (A[15]~^B[15]) && sum[15])

算术右移运算电路的设计考虑:

Verilog HDL的算术右移的运算符为“<<<”。要实现算术右移应注意,被移位的对象必须定义为reg类型,但是在SRA指令,被移位的对象操作数B为输入信号,不能定义为reg类型,因此必须引入reg类型中间变量B_reg,相应的Verilog HDL语句为:

reg signed [31:0] B_reg;

always @(B) begin

B_reg = B;  end

引入reg类型的中间变量B_reg后,就可对B_reg进行算术右移操作。

逻辑运算:

与、或、或非、异或、逻辑移位等运算较为简单,只是要注意一点,ANDXOROR三条指令的立即数为16位无符号数,应“0扩展”为32位无符号数,在运算的同时完成“0扩展”。

CPU的verilog代码:

`timescale 1ns / 1ps
// state macro define
`define idle	1'b0
`define exec	1'b1
// instruction macro define
`define NOP	5'b00000
`define HALT	5'b00001
`define LOAD	5'b00010
`define STORE	5'b00011
`define SLL	5'b00100
`define SLA	5'b00101
`define SRL	5'b00110
`define SRA	5'b00111
`define ADD	5'b01000
`define ADDI	5'b01001
`define SUB	5'b01010
`define SUBI	5'b01011
`define CMP	5'b01100
`define AND	5'b01101
`define OR	5'b01110
`define XOR	5'b01111
`define LDIH	5'b10000
`define ADDC	5'b10001
`define SUBC	5'b10010
`define JUMP	5'b11000
`define JMPR	5'b11001
`define BZ	5'b11010
`define BNZ	5'b11011
`define BN	5'b11100
`define BNN	5'b11101
`define BC	5'b11110
`define BNC	5'b11111
// general register
`define gr0	3'b000
`define gr1	3'b001
`define gr2	3'b010
`define gr3	3'b011
`define gr4	3'b100
`define gr5	3'b101
`define gr6	3'b110
`define gr7	3'b111
 
module CPU(input wire  reset,
       input wire  enable,          //make the
	   input wire  start,           //start CPU
	   input wire  clock,           //clock
	   input wire  [15:0]i_datain,  //instruction
	   input wire  [15:0]d_datain,  //data from memory
	   output reg  d_we,            //write enable
       output wire [7:0]i_addr,     //pc
	   output reg  [7:0]d_addr,     //output adder for data memory
	   output reg  [15:0]d_dataout  //output data to data memory
);
	  
reg [15:0]gr[7:0];             //register file
reg state,next_state;          //to control the CPU

assign i_addr      =    pc;

//************* CPU control *************//
always @(posedge clock)
begin
  if (!reset)
      state <= `idle;
  else
      state <= next_state;
end
	
always@(*)
begin
   case (state)
   `idle : 
	if ((enable == 1'b1) && (start == 1'b1))
	next_state <= `exec;
	else	
	next_state <= `idle;
   `exec :
	if ((enable == 1'b0) || (wb_ir[15:11] == `HALT))
	next_state <= `idle;
	else
	next_state <= `exec;
   endcase
end
//_______________________________________________

reg [15:0]id_ir;
reg [7:0]pc;
//************* IF *************//
always@(posedge clock or negedge reset)
begin
   if (!reset)
   begin
	id_ir <= 16'b0000_0000_0000_0000;
	pc <= 8'b0000_0000;
   end			
   else if (state ==`exec)
   begin				
	if(((ex_ir[15:11] == `BZ) && (zf == 1'b1)) || ((ex_ir[15:11] == `BN) && (nf == 1'b1))||
	 ((ex_ir[15:11] == `BNZ) && (zf == 1'b0)) || ((ex_ir[15:11] == `BNN) && (nf == 1'b0))||
	  ((ex_ir[15:11] == `BC) && (cf == 1'b1)) || ((ex_ir[15:11] == `BNC) && (cf == 1'b0))|| 
		ex_ir[15:11] == `JMPR)
		begin
		pc <= ALUo[7:0];
		id_ir <= i_datain;
		end
	else if(id_ir[15:11] == `JUMP)//如果判断出指令是JUMP,直接跳转,就可以减少功耗,不必冒险
		begin
		pc <= id_ir[7:0];
		id_ir <= i_datain;
		end
         //------------------------------------------------对于LOAD的处理--------------------------------------					
	else if((id_ir[15:11] == `LOAD)&&(i_datain[15:11]!=`JUMP)&&(i_datain[15:11]!=`NOP)&&(i_datain[15:11]!=`HALT)
                &&(i_datain[15:11]!=`LOAD))
		begin
		if((id_ir[10:8]==i_datain[2:0])&&((i_datain[15:11]==`ADD)||(i_datain[15:11]==`ADDC)||(i_datain[15:11]==`SUB)
		 ||(i_datain[15:11]==`SUBC)||(i_datain[15:11]==`CMP)||(i_datain[15:11]==`AND)||(i_datain[15:11]==`OR)
                 ||(i_datain[15:11]==`XOR)))
			begin
			pc <= pc;
			id_ir <= 16'bx;
			end
		else if((id_ir[10:8]==i_datain[6:4])&&((i_datain[15:11]==`STORE)||(i_datain[15:11]==`ADD)||(i_datain[15:11]==`ADDC)
		      ||(i_datain[15:11]==`SUB)||(i_datain[15:11]==`SUBC)||(i_datain[15:11]==`AND)||(i_datain[15:11]==`OR)
                      ||(i_datain[15:11]==`XOR)||(i_datain[15:11]==`CMP)||(i_datain[15:11]==`SLL)||(i_datain[15:11]==`SRL)
                      ||(i_datain[15:11]==`SLA)||(i_datain[15:11]==`SRA)
		 ))
			begin
			pc <= pc;
			id_ir <= 16'bx;
			end
		else if((id_ir[10:8]==i_datain[10:8])&&((i_datain[15:11]==`STORE)||(i_datain[15:11]==`LDIH)||(i_datain[15:11]==`SUBI)
		   ||(i_datain[15:11]==`JMPR)||(i_datain[15:11]==`BZ)||(i_datain[15:11]==`BNZ)||(i_datain[15:11]==`BN)
		   ||(i_datain[15:11]==`BNN)||(i_datain[15:11]==`BNC)))
			begin
			pc <= pc;
			id_ir <= 16'bx;
			end
			end 
		else
			begin
			pc <= pc + 1;
	                id_ir <= i_datain;			
		        end
	end
	else if (state ==`idle)
		pc <= pc;
        else;
end
//----------------------------------------------------------------------------------------------------------------------------------------------------	

reg [15:0]ex_ir,reg_A,reg_B,smdr;
//************* ID *************//
always@(posedge clock or negedge reset)
begin
   if(!reset)
   begin
	ex_ir <= 16'b0000_0000_0000_0000;
	reg_A <= 16'b0000_0000_0000_0000;
	reg_B <= 16'b0000_0000_0000_0000;
	smdr  <= 16'b0000_0000_0000_0000;
   end
   else if (state == `exec)
   begin
	ex_ir <= id_ir;
        //------------------根据不同的操作,reg_A的赋值以处理hazard-------------------------------				
	if ((id_ir[15:11] == `BZ) || (id_ir[15:11] == `BN) || (id_ir[15:11] == `BNZ) || (id_ir[15:11] == `BNN) || (id_ir[15:11] == `JMPR)
	|| (id_ir[15:11] == `LDIH)||(id_ir[15:11] == `ADDI) || (id_ir[15:11] == `SUBI) || (id_ir[15:11] == `BC) || (id_ir[15:11] == `BNC))
               begin    //处理ADD等hazard
	       if((id_ir[10:8]==ex_ir[10:8])&&(ex_ir!=`NOP)&&(ex_ir!=`CMP)&&(ex_ir!=`JUMP)&&(ex_ir!=`LOAD)&&(ex_ir!=`HALT))//这些指令没有目的寄存器,LOAD指令是所需的内容还没有出来存
		  reg_A <= ALUo;                    //后一条指令要用到前一条指令的结果
	       else if((id_ir[10:8]==mem_ir[10:8])&&(mem_ir!=`NOP)&&(mem_ir!=`CMP)&&(mem_ir!=`JUMP)&&(mem_ir!=`HALT))
               //----------------------------------------------------------------------					
                   begin
		   if(mem_ir==`LOAD)
		   reg_A <= d_datain;
		   else
	           reg_A <= reg_C;                   //看看LOAD指令在这里会不会已经出结果了
                   end
               //----------------------------------------------------------------------
	       else if((id_ir[10:8]== wb_ir[10:8])&&(wb_ir!=`NOP)&&(wb_ir!=`CMP)&&(wb_ir!=`JUMP)&&(wb_ir!=`HALT))
		   reg_A <= reg_C1;
	       else
                  //reg_A <= gr[id_ir[10:8]];
		   begin
			if(id_ir[10:8] == 0)
			reg_A <= gr[0];
			else if(id_ir[10:8] == 1)
			reg_A <= gr[1];
			else if(id_ir[10:8] == 2)
			reg_A <= gr[2];
			else if(id_ir[10:8] == 3)
			reg_A <= gr[3];
			else if(id_ir[10:8] == 4)
			reg_A <= gr[4];
			else if(id_ir[10:8] == 5)
			reg_A <= gr[5];
			else if(id_ir[10:8] == 6)
			reg_A <= gr[6];
			else if(id_ir[10:8] == 7)
			reg_A <= gr[7];
		    end
		end
	else if((id_ir[15:11] == `ADD)||(id_ir[15:11] == `LOAD)||(id_ir[15:11] == `STORE)||(id_ir[15:11] == `ADDC)||(id_ir[15:11] == `SUB)
      	     ||(id_ir[15:11] == `SUBC)||(id_ir[15:11] == `CMP) ||(id_ir[15:11] == `AND)  ||(id_ir[15:11] == `OR)  ||(id_ir[15:11] == `XOR)
	     ||(id_ir[15:11] == `SLL) ||(id_ir[15:11] == `SRL) ||(id_ir[15:11] == `SLA)  ||(id_ir[15:11] == `SRA))                 
	//LAOD,STORE,CMP,ADD,ADDC,SUB,SUBC,AND,OR,XOR,SLL,SRL,SLA,SRA	
	begin    //处理ADD等hazard
	   if((id_ir[6:4]==ex_ir[10:8])&&(ex_ir!=`NOP)&&(ex_ir!=`CMP)&&(ex_ir!=`JUMP)&&(ex_ir!=`LOAD)&&(ex_ir!=`HALT))//这些指令没有目的寄存器,LOAD指令是所需的内容还没有出来存
		reg_A <= ALUo;                    //后一条指令要用到前一条指令的结果
	   else if((id_ir[6:4]==mem_ir[10:8])&&(mem_ir!=`NOP)&&(mem_ir!=`CMP)&&(mem_ir!=`JUMP)&&(mem_ir!=`HALT))
           //----------------------------------------------------------------------					
               begin
               if(mem_ir[15:11]==`LOAD)
	       reg_A <= d_datain;
	       else
	       reg_A <= reg_C;                   
               end
            //----------------------------------------------------------------------
	    else if((id_ir[6:4]== wb_ir[10:8])&&(wb_ir!=`NOP)&&(wb_ir!=`CMP)&&(wb_ir!=`JUMP)&&(wb_ir!=`HALT))
	       reg_A <= reg_C1;
	    else
                begin
                if(id_ir[6:4] == 0)
			reg_A <= gr[0];
                else if(id_ir[6:4] == 1)
	                reg_A <= gr[1];
		else if(id_ir[6:4] == 2)
			reg_A <= gr[2];
		else if(id_ir[6:4] == 3)
			reg_A <= gr[3];
		else if(id_ir[6:4] == 4)
			reg_A <= gr[4];
		else if(id_ir[6:4] == 5)
			reg_A <= gr[5];
		else if(id_ir[6:4] == 6)
			reg_A <= gr[6];
		else if(id_ir[6:4] == 7)
			reg_A <= gr[7];					    
	        end
	 end
         else if((( mem_ir[15:11] == `BZ) && (zf == 1'b1)) || ((mem_ir[15:11] == `BN) && (nf == 1'b1)) ||
		 (( mem_ir[15:11] == `BNZ) && (zf == 1'b0))|| ((mem_ir[15:11] == `BNN) && (nf == 1'b0))||
		  ((mem_ir[15:11] == `BC) && (cf == 1'b1)) || ((mem_ir[15:11] == `BNC) && (cf == 1'b0))|| 
	            mem_ir[15:11] == `JMPR)
		reg_A <= 16'b0000_0000_0000_0000;
         else;        
         //------------------根据不同的操作,reg_B的赋值以处理hazard-------------------------------
	 if (id_ir[15:11] == `LDIH)
		reg_B <= {id_ir[7:0], 8'b0000_0000};
	 else if ((id_ir[15:11] == `LOAD) || (id_ir[15:11] == `STORE) || (id_ir[15:11] == `SLL)
  	       || (id_ir[15:11] == `SRL) || (id_ir[15:11] == `SLA)   || (id_ir[15:11] == `SRA))
		reg_B <= {12'b0000_0000_0000, id_ir[3:0]};
	 else if ((id_ir[15:11] == `BZ) || (id_ir[15:11] == `BN) || (id_ir[15:11] == `BNZ) || (id_ir[15:11] == `BNN)|| (id_ir[15:11] == `JMPR)
	    || (id_ir[15:11] == `SUBI) || (id_ir[15:11] == `ADDI) || (id_ir[15:11] == `BC) || (id_ir[15:11] == `BNC) || (id_ir[15:11] == `JUMP))
		reg_B <= {8'b0000_0000, id_ir[7:0]};
	 else if ((id_ir[15:11] == `ADD)||(id_ir[15:11] == `ADDC)||(id_ir[15:11] == `SUB)||(id_ir[15:11] == `SUBC)
	       ||(id_ir[15:11] == `CMP)||(id_ir[15:11] == `AND) ||(id_ir[15:11] == `OR) ||(id_ir[15:11] == `XOR))                
		//ADD,ADDC,SUB,SUBC,AND,OR,XOR,CMP	
		begin    //处理ADD等hazard
		if((id_ir[2:0]==ex_ir[10:8])&&(ex_ir!=`NOP)&&(ex_ir!=`CMP)&&(ex_ir!=`JUMP)&&(ex_ir!=`LOAD)&&(ex_ir!=`HALT))//这些指令没有目的寄存器,LOAD指令是所需的内容还没有出来存
		     reg_B <= ALUo;                    //后一条指令要用到前一条指令的结果
		else if((id_ir[2:0]==mem_ir[10:8])&&(mem_ir!=`NOP)&&(mem_ir!=`CMP)&&(mem_ir!=`JUMP)&&(mem_ir!=`HALT))
                //----------------------------------------------------------------------					
                begin
		     if(mem_ir[15:11]==`LOAD)
		     reg_B <= d_datain;
		     else
		     reg_B <= reg_C;                   //看看LOAD指令在这里会不会已经出结果了
                end
                //----------------------------------------------------------------------
		else if((id_ir[2:0]== wb_ir[10:8])&&(wb_ir!=`NOP)&&(wb_ir!=`CMP)&&(wb_ir!=`JUMP)&&(wb_ir!=`HALT))
		     reg_B <= reg_C1;
		else
                //reg_B <= gr[id_ir[2:0]];
                begin
		     if(id_ir[2:0] == 0)
		     reg_B <= gr[0];
		     else if(id_ir[2:0] == 1)
		     reg_B <= gr[1];
		     else if(id_ir[2:0] == 2)
		     reg_B <= gr[2];
		     else if(id_ir[2:0] == 3)
		     reg_B <= gr[3];
		     else if(id_ir[2:0] == 4)
		     reg_B <= gr[4];
		     else if(id_ir[2:0] == 5)
		     reg_B <= gr[5];
		     else if(id_ir[2:0] == 6)
		     reg_B <= gr[6];
		     else if(id_ir[2:0] == 7)
		     reg_B <= gr[7];
		 end
	  end
	  else if(((mem_ir[15:11] == `BZ) && (zf == 1'b1)) || ((mem_ir[15:11] == `BN) && (nf == 1'b1))||
		  ((mem_ir[15:11] == `BNZ) && (zf == 1'b0)) || ((mem_ir[15:11] == `BNN) && (nf == 1'b0))||
		  ((mem_ir[15:11] == `BC) && (cf == 1'b1)) || ((mem_ir[15:11] == `BNC) && (cf == 1'b0))|| 
		    mem_ir[15:11] == `JMPR)
		     reg_B <= 16'b0000_0000_0000_0000;
          else;
          //-----------------------------------------------------------------------------------------------------------------------------------
          //--------------------------------------------------------------------对smdr的赋值---------------------------------------------------
	  if(id_ir[15:11] == `STORE)
	  //  smdr <= gr[id_ir[10:8]];
          begin    //处理ADD等hazard
	      if((id_ir[10:8]==ex_ir[10:8])&&(ex_ir!=`NOP)&&(ex_ir!=`CMP)&&(ex_ir!=`JUMP)&&(ex_ir!=`LOAD)&&(ex_ir!=`HALT))//这些指令没有目的寄存器,LOAD指令是所需的内容还没有出来存
	      smdr <= ALUo;                    //后一条指令要用到前一条指令的结果
	      else if((id_ir[10:8]==mem_ir[10:8])&&(mem_ir!=`NOP)&&(mem_ir!=`CMP)&&(mem_ir!=`JUMP)&&(mem_ir!=`HALT))
              //----------------------------------------------------------------------					
              begin
		if(mem_ir==`LOAD)
		smdr <= d_datain;
		else
		smdr <= reg_C;                  
              end
              //----------------------------------------------------------------------
	      else if((id_ir[10:8]== wb_ir[10:8])&&(wb_ir!=`NOP)&&(wb_ir!=`CMP)&&(wb_ir!=`JUMP)&&(wb_ir!=`HALT))
		smdr <= reg_C1;
	      else
                  smdr <= gr[id_ir[10:8]];
	   end
     end
end

//wire flag_mem;
reg [15:0]mem_ir,smdr1;		
reg [15:0]reg_C;
reg [15:0]ALUo;
reg zf,nf,cf,dw;
reg cin;
//************************* EX *****************************//	
always@(posedge clock)
begin
   if(!reset)
   begin
      mem_ir<= 16'b0000_0000_0000_0000;
      smdr1 <= 16'b0000_0000_0000_0000;
      reg_C <= 16'b0000_0000_0000_0000;
      dw    <= 1'b0;
      zf    <= 1'b0;
      nf    <= 1'b0;
   end
   else if (state == `exec)
   begin
      mem_ir <= ex_ir;
      smdr1  <= smdr;
      reg_C  <= ALUo;      
      if ((ex_ir[15:11] == `ADDC) || (ex_ir[15:11] == `CMP) || (ex_ir[15:11] == `SUBC)
	|| (ex_ir[15:11] == `SUB) || (ex_ir[15:11] == `ADDI)|| (ex_ir[15:11] == `SUBI)
        || (ex_ir[15:11] == `LDIH)|| (ex_ir[15:11] == `ADD) || (ex_ir[15:11] == `SLL)
        || (ex_ir[15:11] == `SRL) || (ex_ir[15:11] == `SLA) || (ex_ir[15:11] == `SRA)
	|| (ex_ir[15:11] == `BZ)  || (ex_ir[15:11] == `BNZ) || (ex_ir[15:11] == `BN)
        || (ex_ir[15:11] == `BNN) || (ex_ir[15:11] == `BC)  || (ex_ir[15:11] == `BNC))
	 //ADD和CMP指令中,nf为1当最高位为1时,此时结果是一个负数。
      begin                                             //zf为1,当ALU输出结果为0时。
      if (ALUo == 16'b0000_0000_0000_0000)
	zf <= 1'b1;
      else
        zf <= 1'b0;
      if (ALUo[15] == 1'b1)
        nf <= 1'b1;
      else
	nf <= 1'b0;
      end
      else
      begin
	zf <= zf;
	nf <= nf;
      end
      if (ex_ir[15:11] == `STORE)             //如果指令是STORE的话,那么数据内存的写入使能赋为1,否则为0
	dw <= 1'b1;
      else
	dw <= 1'b0;
      end	
end

//--------------------------------ALU--------------------------------
always @(reg_A or reg_B or ex_ir[15:11])      
      case(ex_ir[15:11])
	    `ADD:                                              
				     {cf,ALUo} <= reg_A + reg_B;                       //add
	    `ADDI:                                              
				     {cf,ALUo} <= reg_A + reg_B;                         //addi
		`ADDC:                                                
				     {cf,ALUo} <= reg_A + reg_B + cin;                   //addc
		`SUB: 			                           
                     {cf,ALUo} <= reg_A - reg_B;                         //sub
		`SUBI: 			                           
                     {cf,ALUo} <= reg_A - reg_B;                         //subi
		`SUBC: 			                          
                     {cf,ALUo} <= reg_A - reg_B - cin;                   //subc
		`CMP:
				     {cf,ALUo} <=  reg_A - reg_B;                        //cmp。计算a-b,根据结果得出flag的值
		`LOAD:                                             
			          {cf,ALUo} <= reg_A + reg_B;                         //load
		`STORE:                                            
				     {cf,ALUo} <= reg_A + reg_B;  	                     //store
		`LDIH:                                             
		       {cf,ALUo} <= reg_A + reg_B;  	                     //ldih		      		                                    
		`AND: 
		                  ALUo <= (reg_A & reg_B);                     //and 
        `OR: 
		                  ALUo <= (reg_A | reg_B);                     //or                                      
        `XOR: 
		                          ALUo <= (reg_A ^ reg_B);                     //xor
        `SLL: 
					                 ALUo <= (reg_A << reg_B[3:0]);               //ex_ir[3:0]);             
                                  //sll,使用的是指令中传过来的数据
        `SLA:                     
                                   ALUo <= (reg_A <<< reg_B[3:0]);              //ex_ir[3:0]);              //sla
        `SRL: 
				        	  ALUo <= (reg_A >> reg_B[3:0]);               //ex_ir[3:0]);               //srl         
        `SRA:     
                                          ALUo <= (reg_A >>> reg_B[3:0]);              //ex_ir[3:0]);		         //sra 
        `BZ:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bz
        `BNZ:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bnz				  
		`BN:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bn
		`BNN:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bnn
		`BC:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bc
		`BNC:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //bnc
		`JMPR:
              	                     {cf,ALUo} <= reg_A + reg_B;                         //jmpr
		default:  
		begin
		                      ALUo <= ALUo;
			              cf <= cf;
	        end
     endcase


reg [15:0]wb_ir,reg_C1;		
//**************************************** MEM ************************************//
always@(posedge clock)
begin    	  
   if(!reset)
      begin
      cin      <= 1'b0;
      wb_ir    <= 16'b0000_0000_0000_0000;
      reg_C1   <= 16'b0000_0000_0000_0000;
      d_we     <= 0;
      d_addr   <= 8'b0;
      d_dataout<= 16'b0;
      end
    else if (state == `exec)
      begin
      cin      <= cf;
      wb_ir    <= mem_ir;
      begin
	 d_we     <= dw;
         d_addr   <= reg_C[7:0];
         d_dataout<= smdr1;
      end
      if (mem_ir[15:11] == `LOAD)            //除了LOAD指令外,reg_C1均来自reg_C
	 reg_C1 <= d_datain;
	 else//ADD,ADDC,SUB,SUBC,ADDI,SUBI,AND,OR,XOR,SLL,SRL,SLA,SRA(CMP应该要特殊考虑)
	 reg_C1 <= reg_C;
       end	
end	


//*********************************** WB *****************************************//
always@(posedge clock)
if(!reset)
begin
      gr[7] <= 16'b0000_0000_0000_0000;
      gr[6] <= 16'b0000_0000_0000_0000;
      gr[5] <= 16'b0000_0000_0000_0000;
      gr[4] <= 16'b0000_0000_0000_0000;
      gr[3] <= 16'b0000_0000_0000_0000;
      gr[2] <= 16'b0000_0000_0000_0000;
      gr[1] <= 16'b0000_0000_0000_0000;
      gr[0] <= 16'b0000_0000_0000_0000;
end
else if (state == `exec)
begin
   if ((wb_ir[15:11] == `LOAD)|| (wb_ir[15:11] == `ADD) || (wb_ir[15:11] == `ADDC)
    || (wb_ir[15:11] == `SUB) || (wb_ir[15:11] == `SUBC)|| (wb_ir[15:11] == `LDIH)
    || (wb_ir[15:11] == `ADDI)|| (wb_ir[15:11] == `SUBI)|| (wb_ir[15:11] == `AND) 
    || (wb_ir[15:11] == `OR)  || (wb_ir[15:11] == `XOR) || (wb_ir[15:11] == `SLL)
    || (wb_ir[15:11] == `SLA) || (wb_ir[15:11] == `SRL) || (wb_ir[15:11] == `SRA)  )
	gr[wb_ir[10:8]] <= reg_C1;
   else
	gr[wb_ir[10:8]] <= gr[wb_ir[10:8]];
end
else;

endmodule



仿真文件:

`timescale 1ns / 1ps


// Company: 
// Engineer:
//
// Create Date:   20:53:17 10/25/2013
// Design Name:   CPU
// Module Name:   F:/Digital_Practice/Practice/CPU/stimulus2.v
// Project Name:  CPU
// Revision 0.01 - File Created

// state macro define
`define idle	1'b0
`define exec	1'b1
// instruction macro define
`define NOP	5'b00000
`define HALT	5'b00001
`define LOAD	5'b00010
`define STORE	5'b00011
`define SLL	5'b00100
`define SLA	5'b00101
`define SRL	5'b00110
`define SRA	5'b00111
`define ADD	5'b01000
`define ADDI	5'b01001
`define SUB	5'b01010
`define SUBI	5'b01011
`define CMP	5'b01100
`define AND	5'b01101
`define OR	5'b01110
`define XOR	5'b01111
`define LDIH	5'b10000
`define ADDC	5'b10001
`define SUBC	5'b10010
`define JUMP	5'b11000
`define JMPR	5'b11001
`define BZ	5'b11010
`define BNZ	5'b11011
`define BN	5'b11100
`define BNN	5'b11101
`define BC	5'b11110
`define BNC	5'b11111
// general register 
`define gr0	3'b000
`define gr1	3'b001
`define gr2	3'b010
`define gr3	3'b011
`define gr4	3'b100
`define gr5	3'b101
`define gr6	3'b110
`define gr7	3'b111

module stimulus2;

	// Inputs
	reg reset;
	reg enable;
	reg start;
	reg clock;
	reg [15:0] i_datain;
	reg [15:0] d_datain;

	// Outputs
	wire d_we;
	wire [7:0] i_addr;
	wire [7:0] d_addr;
	wire [15:0] d_dataout;

	// Instantiate the Unit Under Test (UUT)
	CPU uut (
		.reset(reset), 
		.enable(enable), 
		.start(start), 
		.clock(clock), 
		.i_datain(i_datain), 
		.d_datain(d_datain), 
		.d_we(d_we), 
		.i_addr(i_addr), 
		.d_addr(d_addr), 
		.d_dataout(d_dataout)
	);

initial begin
		$dumpfile("CPU.vcd");
                $dumpvars(1,stimulus2.uut);
		// Initialize Inputs
		clock = 0;
		reset = 0;
		start = 0;
		enable = 0;
		d_datain = 0;
		i_datain = 0;

		// Wait 100 ns for global reset to finish
		#10;
        
		// Add stimulus here
		//************* test pattern *************//	
		$display("LOAD,ADD,HALT,SUB,STORE");
		$display("pc:     id_ir      :reg_A:reg_B:ALUo:reg_C:da:dd  :w:reC1:gr1 :gr2 :gr3 :exir:mmir:wbir:smdr");
		$monitor("%h:%b:%h :%h :%h :%h :%h:%h:%b:%h:%h:%h:%h:%h:%h:%h:%h:%b", 
			uut.pc, uut.id_ir, uut.reg_A, uut.reg_B, uut.ALUo,uut.reg_C,
			d_addr, d_dataout, d_we, uut.reg_C1, uut.gr[1], uut.gr[2], uut.gr[3],uut.ex_ir,uut.mem_ir,uut.wb_ir,uut.smdr,uut.zf);
			
		enable <= 1; start <= 0; i_datain <= 0; d_datain <= 0; /*select_y <= 0;*/

		#10 reset  <= 0;
		#10 reset  <= 1;
		#10 enable <= 1;
		#10 start  <= 1;
		#10 start  <= 0;
	  		  i_datain <= {`LOAD, `gr1, 1'b0, `gr0, 4'b0000};
			  d_datain <= 16'hfC00;  // 3 clk later from LOAD
		#10  i_datain <= {`LOAD, `gr2, 1'b0, `gr0, 4'b0001};      	  	    			
		#10;//阻塞相当于延迟一个周期取i_datain						
                #10  i_datain <= {`ADD, `gr3, 1'b0, `gr1, 1'b0, `gr2};
                #10  i_datain <= {`ADD, `gr3, 1'b0, `gr1, 1'b0, `gr2};
		     d_datain <=   16'h10AB; 

		#10 i_datain <= {`ADDC, `gr3, 1'b0, `gr2, 1'b0, `gr1};
		#10 i_datain <= {`SUB, `gr3, 1'b0, `gr2, 1'b0, `gr1};
		#10 i_datain <= {`SUBC, `gr3, 1'b0, `gr2, 1'b0, `gr1};
                #10 i_datain <= {`STORE, `gr3, 1'b0, `gr0, 4'b0010};
		
		//#10 i_datain <= {`HALT, 11'b000_0000_0000};
		//
		#10 start <= 1;
		#10 start <= 0;
		$display("SLL,SRA,SLA,SRL");
		$display("pc:     id_ir      :reg_A:reg_B:ALUo:reg_C:da:dd  :w:reC1:gr1 :gr2 :gr3 :ddin:exir:mmir:wbir:smdr");
			 i_datain <= {`SLL, `gr3, 1'b0, `gr1, 4'b0010};
		#10 i_datain <= {`SRA, `gr3, 1'b0, `gr3, 4'b0010};
		#10 i_datain <= {`SLA, `gr3, 1'b0, `gr2, 4'b011};
		#10 i_datain <= {`SRL, `gr3, 1'b0, `gr2, 4'b0001};
		//#10 i_datain <= {`HALT, 11'b000_0000_0000};
		//
		#10 start <= 1;
		
		#10 start <= 0;
		$display("LDIH,SUBI,BZ,AND,OR,XOR");
		$display("pc:     id_ir      :reg_A:reg_B:ALUo:reg_C:da:dd  :w:reC1:gr1 :gr2 :gr3 :ddin:exir:mmir:wbir:smdr:zf");
			 i_datain <= {`LDIH, `gr1, 8'b0000_0100 };
		#10 i_datain <= {`BZ, `gr3, 4'b0000, 4'b0001 };
		#10 i_datain <= {`ADDI, `gr1, 4'b1111, 4'b1111 };
		#10 i_datain <= {`AND, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`OR, `gr3,1'b0, `gr1,1'b0, `gr2 };
		#10 i_datain <= {`XOR, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`HALT, 11'b000_0000_0000};
		#10 i_datain <= {`BZ, `gr3, 4'b0000, 4'b0001 };
		#10 i_datain <= {`ADDI, `gr1, 4'b1111, 4'b1111 };
		#10 i_datain <= {`AND, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`OR, `gr3,1'b0, `gr1,1'b0, `gr2 };
		#10 i_datain <= {`XOR, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`HALT, 11'b000_0000_0000};
		#10 i_datain <= {`BZ, `gr3, 4'b0000, 4'b0001 };
		#10 i_datain <= {`ADDI, `gr1, 4'b1111, 4'b1111 };
		#10 i_datain <= {`AND, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`OR, `gr3,1'b0, `gr1,1'b0, `gr2 };
		#10 i_datain <= {`XOR, `gr3, 1'b0,`gr1, 1'b0,`gr2 };
		#10 i_datain <= {`HALT, 11'b000_0000_0000};
	end
      
	always #5 clock = ~clock;
      
endmodule

综合结果:

五段式流水线_cpu流水线工作原理

仿真结果:

五段式流水线_cpu流水线工作原理

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170397.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Hash算法的讲解[通俗易懂]

    Hash算法的讲解[通俗易懂]散列表,又叫哈希表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙。散列表(Hashta

  • RAID0、RAID1及RAID5的区别详解

    RAID0、RAID1及RAID5的区别详解目前已有的RAID(RedundantArrayofIndependentDisks,独立冗余磁盘阵列)技术有很多种,但是RAID0、RAID1、RAID5是最常见的几种方案。1、RAID0RAID0技术把多块(至少两块)物理硬盘设备通过软件或硬件的方式串联在一起,组成一个大的卷组,并将数据依次写入到各个物理硬盘中。这样,在最理想的情况下,硬盘设备的读写性能会提升数倍,但是若任意一…

  • HTML—标签总结

    HTML—标签总结

  • 模型剪枝学习笔记 — EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning

    模型剪枝学习笔记 — EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning论文:https://arxiv.org/abs/2007.02491代码:https://github.com/anonymous47823493/EagleEye这篇论文一定要好好研究下,提出该剪枝方法的是暗物智能科技&中山大学,当初去面试过该公司,聊了将近一小时,大部分是关于剪枝的内容。。。。。。。可惜自己真实菜如狗。。。。。…

  • oracle优化书籍推荐

    经常听到有做应用的朋友抱怨数据库的性能问题,比如非常低的并发,令人崩溃的响应时间,长时间的锁等待,锁升级,甚至是死锁,等等。本文针对应用开发人员经常接触的性能问题,推荐几本书,请大家关注。 一、《 oracle9i/10g 编程艺术》内容简介 本书是一本关于Oracle9jaz&10g数据库体系结构的权威图书,涵盖了所有最重要的Ora

  • Sping 源码深度解析——容器的功能扩展 【学习笔记】

    我为什么 看的不够远,因为高度不够!学习和整理总结Spring容器的功能扩展,本文为学习笔记,其中有一些内容是自己的思考总结!一、两种Spring中bean加载的方式第一种# 第一种使用 BeanFactory 以及它默认的实现类 XmlBeanFactoryBeanFactory bf = new XmlBeanFactory(new ClassPathReso…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号