填充图画图片_脂肪填充失败

填充图画图片_脂肪填充失败图片处理-填充图片-numpy.padnp.pad()常用于深度学习中的数据预处理(例如用于图片处理中填充图片),可以将numpy数组按指定的方法填充成指定的形状。对一维数组的填充importnumpyasnparr1D=np.array([1,1,2,2,3,4])”’不同的填充方法”’print(‘constant:’+str…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

#图片处理-填充图片-numpy.pad
参考博客1
参考博客2
np.pad() 常用于深度学习中的数据预处理(例如用于图片处理中填充图片),可以将numpy数组按指定的方法填充成指定的形状。

##对一维数组的填充

import numpy as np

arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print ('constant:     ' + str(np.pad(arr1D, (2, 3), 'constant')))
print ('edge:         ' + str(np.pad(arr1D, (2, 3), 'edge')))
print ('linear_ramp:  ' + str(np.pad(arr1D, (2, 3), 'linear_ramp')))
print ('maximum:      ' + str(np.pad(arr1D, (2, 3), 'maximum')))
print ('mean:         ' + str(np.pad(arr1D, (2, 3), 'mean')))
print ('median:       ' + str(np.pad(arr1D, (2, 3), 'median')))
print ('minimum:      ' + str(np.pad(arr1D, (2, 3), 'minimum')))
print ('reflect:      ' + str(np.pad(arr1D, (2, 3), 'reflect')))
print ('symmetric:    ' + str(np.pad(arr1D, (2, 3), 'symmetric')))
print ('wrap:         ' + str(np.pad(arr1D, (2, 3), 'wrap')))

constant:     [0 0 1 1 2 2 3 4 0 0 0]
edge:         [1 1 1 1 2 2 3 4 4 4 4]
linear_ramp:  [0 0 1 1 2 2 3 4 3 1 0]
maximum:      [4 4 1 1 2 2 3 4 4 4 4]
mean:         [2 2 1 1 2 2 3 4 2 2 2]
median:       [2 2 1 1 2 2 3 4 2 2 2]
minimum:      [1 1 1 1 2 2 3 4 1 1 1]
reflect:      [2 1 1 1 2 2 3 4 3 2 2]
symmetric:    [1 1 1 1 2 2 3 4 4 3 2]
wrap:         [3 4 1 1 2 2 3 4 1 1 2]

###参数解释:
第一个参数是待填充数组
第二个参数是填充的形状,(2,3)表示前面两个,后面三个
第三个参数是填充的方法
###填充方法:
constant连续一样的值填充,有关于其填充值的参数。constant_values=(x, y)时前面用x填充,后面用y填充。缺参数是为0。
edge用边缘值填充
linear_ramp边缘递减的填充方式
maximum, mean, median, minimum分别用最大值、均值、中位数和最小值填充
reflect, symmetric都是对称填充。前一个是关于边缘对称,后一个是关于边缘外的空气对称╮(╯▽╰)╭
wrap用原数组后面的值填充前面,前面的值填充后面
也可以有其他自定义的填充方法

##对二维数组的填充

import numpy as np

Matrix = np.arange(1,7).reshape(2,3)   
M = np.pad(Matrix,((1,1),(1,2)),'constant',constant_values = (0,0))
print(M)

[[0 0 0 0 0 0]
 [0 1 2 3 0 0]
 [0 4 5 6 0 0]
 [0 0 0 0 0 0]]
[Finished in 0.2s]

这里写图片描述
np.pad(Matrix,((1,1),(1,2)),‘constant’,constant_values = (0,0))
表示在二维数组Matrix的边缘填充constant_values指定的数值

(1,1)表示在Matrix的第[0]轴填充(二维数组中,0轴表示行),即在0轴前面填充1个宽度的0,比如数组Matrix中的1,2,3两个元素前面各填充了一行0,在4,5,6下面填充了一行0。

(1,2)表示在Matrix的第[1]轴填充(二维数组中,1轴表示列),即在1轴前面填充1个宽度的0,后面填充2个宽度的0

constant_values表示填充值,且(axis0,axis1)的填充值等于(0,0)
##对多维数组的填充

import numpy as np

arr3D = np.array([[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]], 
                  [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], 
                  [[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]]])
                  
print ('constant:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'constant')))
print ('edge:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'edge')))
print ('linear_ramp:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'linear_ramp')))
print ('maximum:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'maximum')))
print ('mean:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'mean')))
print ('median:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'median')))
print ('minimum:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'minimum')))
print ('reflect:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'reflect')))
print ('symmetric:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'symmetric')))
print ('wrap:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'wrap')))

constant:  
[[[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 0 0 0 0 0 0 0 0]]]
edge:  
[[[1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]]

 [[0 0 0 1 2 3 4 5 5 5]
  [0 0 0 1 2 3 4 5 5 5]
  [0 0 0 1 2 3 4 5 5 5]
  [0 0 0 1 2 3 4 5 5 5]
  [0 0 0 1 2 3 4 5 5 5]]

 [[1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]
  [1 1 1 1 2 2 3 4 4 4]]]
linear_ramp:  
[[[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 0 1 2 3 4 5 2 0]
  [0 0 0 1 2 3 4 5 2 0]
  [0 0 0 1 2 3 4 5 2 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 1 1 2 2 3 4 2 0]
  [0 0 0 0 0 0 0 0 0 0]]]
maximum:  
[[[4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]]

 [[5 5 0 1 2 3 4 5 5 5]
  [5 5 0 1 2 3 4 5 5 5]
  [5 5 0 1 2 3 4 5 5 5]
  [5 5 0 1 2 3 4 5 5 5]
  [5 5 0 1 2 3 4 5 5 5]]

 [[4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]
  [4 4 1 1 2 2 3 4 4 4]]]
mean:  
[[[2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]]

 [[2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]]

 [[2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]]]
median:  
[[[2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]]

 [[2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]
  [2 2 0 1 2 3 4 5 2 2]]

 [[2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]
  [2 2 1 1 2 2 3 4 2 2]]]
minimum:  
[[[1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]]

 [[0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]
  [0 0 0 1 2 3 4 5 0 0]]

 [[1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]
  [1 1 1 1 2 2 3 4 1 1]]]
reflect:  
[[[2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]]

 [[2 1 0 1 2 3 4 5 4 3]
  [2 1 0 1 2 3 4 5 4 3]
  [2 1 0 1 2 3 4 5 4 3]
  [2 1 0 1 2 3 4 5 4 3]
  [2 1 0 1 2 3 4 5 4 3]]

 [[2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]
  [2 1 1 1 2 2 3 4 3 2]]]
symmetric:  
[[[1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]]

 [[1 0 0 1 2 3 4 5 5 4]
  [1 0 0 1 2 3 4 5 5 4]
  [1 0 0 1 2 3 4 5 5 4]
  [1 0 0 1 2 3 4 5 5 4]
  [1 0 0 1 2 3 4 5 5 4]]

 [[1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]
  [1 1 1 1 2 2 3 4 4 3]]]
wrap:  
[[[3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]]

 [[4 5 0 1 2 3 4 5 0 1]
  [4 5 0 1 2 3 4 5 0 1]
  [4 5 0 1 2 3 4 5 0 1]
  [4 5 0 1 2 3 4 5 0 1]
  [4 5 0 1 2 3 4 5 0 1]]

 [[3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]
  [3 4 1 1 2 2 3 4 1 1]]]
[Finished in 0.2s]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170274.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • vscode设置vue模板_vscode怎么创建vue项目

    vscode设置vue模板_vscode怎么创建vue项目VSCode配置Vue模板代码前端行业使用的编辑器有很多,比如VSCode和webStorm,其中在创建vue文件后webStorm可以自动生成相关的代码,而在VSCode中得一个一个的敲,这样既浪费时间又效率低,因此,在VSCode中可以一键生成vue模板吗?当然可以,过程如下:1、打开VSCode编辑器2、左上角文件(F)=>首选项=>用户片段3、在出现的框中输入vue之后按回车键4、在出现的vue.json文件内写入以下代码

  • ZigBee协议栈简介和流程「建议收藏」

    ZigBee协议栈简介和流程「建议收藏」ZigBee协议栈实际上就是ZigBee协议的API接口一般步骤为:1.组网:调用协议栈的组网函数、加入网络函数,实现网络的建立与节点的加入2.发送:发送节点调用协议栈的无线数据发送函数,实现无线数据发送3.接收:接收节点调用协议栈的无线数据接收函数,实现无线数据接收大致流程:main()→osal_init_system()→osalInitTasks()→SampleAp

  • Effective C++:条款28:避免返回 handles 指向对象内部成员

    Effective C++:条款28:避免返回 handles 指向对象内部成员

    2021年12月16日
  • LoRa学习:LoRa关键参数(扩频因子,编码率,带宽)的设定及解释

    LoRa学习:LoRa关键参数(扩频因子,编码率,带宽)的设定及解释LoRa学习:LoRa关键参数(扩频因子,编码率,带宽)的设定及解释1、扩频因子(SF)2、编码率(CR)3、信号带宽(BW)4、LoRa信号带宽BW、符号速率Rs和数据速率DR的关系5、LoRa信号带宽、扩频因子和编码率的设定6、空中速率针对特定应用,开发人员可通过调制扩频因子、调制带宽、纠错编码率这三个关键设计参数,对LoRa调制解调技术进行优化。。…

    2022年10月10日
  • USB转RS485/RS422接线说明

    USB转RS485/RS422接线说明       

  • pycharm2021.11.3激活码(JetBrains全家桶)[通俗易懂]

    (pycharm2021.11.3激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号