大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
摘要:这篇Python开发技术栏目下的“python dataframe向下向上填充,fillna和ffill的方法”,介绍的技术点是“DataFrame、fillna、Python、ffill、_和__、填充”,希望对大家开发技术学习和问题解决有帮助。今天小编就为大家分享一篇python dataframe向下向上填充,fillna和ffill的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
首先新建一个dataframe:
In[8]: df = pd.DataFrame({‘name’:list(‘ABCDA’),’house’:[1,1,2,3,3],’date’:[‘2010-01-01′,’2010-06-09′,’2011-12-03′,’2011-04-05′,’2012-03-23’]})
In[9]: df
Out[9]:
date house name
0 2010-01-01 1 A
1 2010-06-09 1 B
2 2011-12-03 2 C
3 2011-04-05 3 D
4 2012-03-23 3 A
将date列改为时间类型:
In[12]: df.date = pd.to_datetime(df.date)
数据的含义是这样的,我们有ABCD四个人的数据,已知A在2010-01-01的时候,名下有1套房,B在2010-06-09的时候,名下有1套房,C在2011-12-03的时候,有2套房,D在2011-04-05的时候有3套房,A在2012-02-23的时候,数据更新了,有两套房。
要求在有姓名和时间的情况下,能给出其名下有几套房:
比如A在2010-01-01与2012-03-23期间任意一天,都应该是1套房,在2012-03-23之后,都是3套房。
我们使用pandas的fillna方法,选择ffill。
首先我们获得一个2010-01-01到2017-12-01的dataframe
In[14]: time_range = pd.DataFrame(
pd.date_range(‘2010-01-01′,’2017-12-01′,freq=’D’), columns=[‘date’]).set_index(“date”)
In[15]: time_range
Out[15]:
Empty DataFrame
Columns: []
Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, …]
[2892 rows x 0 columns]
然后用上上篇博客中提到的pivot_table将原本的df转变之后,与time_range进行merger操作。
In[16]: df = pd.pivot_table(df, columns=’name’, index=’date’)
In[17]: df
Out[17]:
house
name A B C D
date
2010-01-01 1.0 NaN NaN NaN
2010-06-09 NaN 1.0 NaN NaN
2011-04-05 NaN NaN NaN 3.0
2011-12-03 NaN NaN 2.0 NaN
2012-03-23 3.0 NaN NaN NaN
In[18]: df = df.merge(time_range,how=”right”, left_index=True, right_index=True)
然后再进行向下填充操作:
In[20]: df = df.fillna(method=’ffill’)
最后:
df = df.stack().reset_index()
结果太长,这里就不粘贴了。如果想向上填充,可选择method = ‘bfill‘
以上这篇python dataframe向下向上填充,fillna和ffill的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持Java大数据社区。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170031.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...