pandas中使用fillna函数填充NaN值「建议收藏」

pandas中使用fillna函数填充NaN值「建议收藏」1.参数解析1.1inplace参数取值:True、FalseTrue:直接修改原对象False:创建一个副本,修改副本,原对象不变(缺省默认)1.2method参数取值:{‘pad’,‘ffill’,‘backfill’,‘bfill’,None},defaultNonepad/ffill:用前一个非缺失值去填充该缺失值backfill/bfill:用下一个非缺失值填充该缺失值None:指定一个值去替换缺失值(缺省默认这种方式)1.3limit参数:限制

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1. 参数解析

1.1 inplace参数

取值:True、False

True:直接修改原对象

False:创建一个副本,修改副本,原对象不变(缺省默认)

1.2 method参数

取值 : {‘pad’, ‘ffill’,‘backfill’, ‘bfill’, None}, default None

pad/ffill:用前一个非缺失值去填充该缺失值

backfill/bfill:用下一个非缺失值填充该缺失值

None:指定一个值去替换缺失值(缺省默认这种方式)

1.3 limit参数:

限制填充个数

1.4 axis参数

修改填充方向

补充

isnull 和 notnull 函数用于判断是否有缺失值数据
isnull:缺失值为True,非缺失值为False
notnull:缺失值为False,非缺失值为True

2. 代码实例

#导包
import pandas as pd
import numpy as np
from numpy import nan as NaN
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1 常数填充

2.1.1 用常数填充

#1.用常数填充
print (df1.fillna(100))
print ("-----------------------")
print (df1)

运行结果:

       0      1      2
0    1.0    2.0    3.0
1  100.0  100.0    2.0
2  100.0  100.0  100.0
3    8.0    8.0  100.0
-----------------------
     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1.2 用字典填充

第key列的NaN用key对应的value值填充

df1.fillna({ 
   0:10,1:20,2:30})

运行结果:

      0     1     2
0   1.0   2.0   3.0
1  10.0  20.0   2.0
2  10.0  20.0  30.0
3   8.0   8.0  30.0

2.2 使用inplace参数

print (df1.fillna(0,inplace=True))
print ("-------------------------")
print (df1)

运行结果:

在这里插入代码片

2.3 使用method参数

1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='ffill'))

运行结果:

   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  NaN  7.0
2  6  3  1  NaN  NaN
3  5  4  9  NaN  NaN
4  6  5  4  6.0  9.0
-------------------------
   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  5.0  7.0
2  6  3  1  5.0  7.0
3  5  4  9  5.0  7.0
4  6  5  4  6.0  9.0

2.method = ‘bflii’/‘backfill’:用下一个非缺失值填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill'))

运行结果:

   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  NaN  2.0
2  4  9  2  NaN  NaN
3  9  7  3  NaN  NaN
4  6  1  3  5.0  5.0
-------------------------
   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  5.0  2.0
2  4  9  2  5.0  5.0
3  9  7  3  5.0  5.0
4  6  1  3  5.0  5.0

2.4 使用limit参数

用下一个非缺失值填充该缺失值且每列只填充2个

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill', limit=2))

运行结果:

   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  NaN  NaN
3  8  5  8  NaN  NaN
4  8  6  2  4.0  4.0
-------------------------
   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  4.0  4.0
3  8  5  8  4.0  4.0
4  8  6  2  4.0  4.0

2.5 使用axis参数

axis=0 对每列数据进行操作
axis=1 对每行数据进行操作

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2.fillna(method="ffill", limit=1, axis=1))

运行结果:

    0    1    2    3    4
0  0.0  4.0  9.0  7.0  2.0
1  6.0  5.0  0.0  0.0  3.0
2  8.0  8.0  8.0  8.0  NaN
3  5.0  5.0  6.0  6.0  NaN
4  7.0  5.0  7.0  4.0  1.0

还有一些pandas的基础运算请参考这篇文章->pandas | DataFrame基础运算以及空值填充

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170012.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • db4o 记

    db4o 记阅读http://www-128.ibm.com/developerworks/cn/java/j-lo-db4o2/ 下载地址http://developer.db4o.com/files/folders/objectmanager_xx/default.aspx 有cn的代码—–mainpackagecom;importbo.AutoInfo;importbo.

  • HTML中meta标签的作用与使用

    HTML中meta标签的作用与使用META标签用来描述一个HTML网页文档的属性META标签可分为两大部分:HTTP-EQUIV和NAME变量。HTTP实例HTML代码实例中有一项内容是<metahttp-equiv="Content-Type"content="text/html;charset=gb2312">其作用是指定了当前文档所使用的字符编码为gb2312,也就是中文简体字符。根据这一行代码,浏览器就可以…

  • css transition ease,css3 transition属性「建议收藏」

    css transition ease,css3 transition属性「建议收藏」最近打算学习css3知识,觉得css3写出来的效果好炫好酷,之前一直想要学习来着。可能之前的决心,毅力,耐心不够,所以想要重整起来,放下浮躁的心态,一步一个脚印,踏踏实实的来学习。首先学习的是css3transition属性,该属性的定义为从一个属性值平滑过渡到另一个属性值。格式为:transition:,或transition-property:transition-duration:tr…

  • Spring源码下载及安装

    Spring源码下载及安装今天下午开始学习Spring源码深度解析,第一章是进行环境搭建。。。。。照着书整,但是遇到很多问题,然后就各种百度,终于搭建成功了,这里写下博客进行记录总结下:一.安装GitHub1、到官网下载客户端:https://github-windows.s3.amazonaws.com/GitHubSetup.exe,安装完成后,会在桌面上出现两个图标,GitShell和GitHub。那两个图标分别是…

  • warning: #1300-D: XXX inherits implicit virtual 报警

    warning: #1300-D: XXX inherits implicit virtual 报警在KeilMDK里使用了C++,其中用到了基类和派生类。编译的时候出现了大量warning: #1300-D:XX_function inheritsimplicitvirtual的警告信息。由于对C++不熟,花了好半天时间去找消除警告信息的方法。后面发现是这样的。在基类中,定义了虚成员函数。如下:classDriver{public:virtual…

  • IDEA优化内存配置,可提高启动和运行速度(亲测有效)「建议收藏」

    IDEA优化内存配置,可提高启动和运行速度(亲测有效)「建议收藏」一、优化IDEA配置IDEA默认启动配置主要考虑低配置用户,参数不高(默认最低128m,最高512m),导致启动慢,然后运行也不流畅,这里我们需要优化下启动和运行配置;但是在工作中的电脑一般都是8G或者16G的运行内存,所以我们需要手动去修改默认的IDEA配置。二、手动修改IDEA配置步骤找到IDEA安装的bin目录打开idea.exe.vmoptions文件关键的三个参…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号