pandas fillna详解

pandas fillna详解pandas中补全nan具体的参数Series.fillna(self,value=None,method=None,axis=None,inplace=False,limit=None,downcast=None,**kwargs)[source]参数: value:scalar,dict,Series,orDataFrameValuetouset…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

pandas中补全nan


具体的参数
Series.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)[source]


参数:	
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list.

其他的参数:

method : { 
   ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap.

axis : { 
   0 or ‘index’}
Axis along which to fill missing values.

inplace : bool, default False
If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).

limit : int, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

downcast : dict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).

Returns:	
Series
Object with missing values filled.

例子:

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, 5],
...                    [np.nan, 3, np.nan, 4]],
...                   columns=list('ABCD'))
>>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

补零

>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

向前补充,按列 ffill forward fill

>>> df.fillna(method='ffill')
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

改变方向 axis = 1按行的方向

>>> df.fillna(method='ffill',axis=1)
 	A	B	C	D
0	NaN	2.0	2.0	0.0
1	3.0	4.0	4.0	1.0
2	NaN	NaN	NaN	5.0
3	NaN	3.0	3.0	4.0

按字典补充,列名:value

>>> values = { 
   'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

用limit限制补充的个数

>>> df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

实际中常用的按均值补充。

for column in list(df.columns[df.isnull().sum() > 0]):
    mean_val = df[column].mean()
    df[column].fillna(mean_val, inplace=True)

这是用来查看需要补充的列

list(df.columns[df.isnull().sum() > 0])
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/170010.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Java基础——成员变量、局部变量和静态变量的区别

    Java基础——成员变量、局部变量和静态变量的区别之前在刚开始学习Java的时候,就谈了谈Java基础中的变量,虽然知道这货以后会经常用到,但没想到了基本语法这里,竟然有冒出来了成员变量、局部变量和静态变量。变来变去太容易让人搞晕了,挑拣出来梳理一下喽!    要想区分这哥仨,首先,我们得知道它们分别是什么。先从成员变量下刀。成员变量    我们来研究一个事物:        属性:外在特征;例如人的身高

  • 图像降采样原理_降采样滤波

    图像降采样原理_降采样滤波转自:http://www.lofter.com/postentry?from=search&permalink=1cb3111d_6ee95871、先说说这两个词的概念: 降采样

  • JMESPath_正则表达式语法

    JMESPath_正则表达式语法前言JMESPath是JSON的查询语言。您可以从JSON文档中提取和转换元素官方文档:https://jmespath.org/tutorial.html基本表达式JMESPath用的最多的

  • Java 程序员必须掌握的 4 大开源框架!

    Java 程序员必须掌握的 4 大开源框架!对于开发来说,我们在工作中普遍都会用到各个开源框架,比如最基础的Spring,使开发网络编程变得特别简单的Netty框架,还有成为目前微服务框架首选的SpringCloud等。在多个框架之上,我们仅需使用几行代码,即可实现业务需要的复杂功能,大大减少了工作量。也正因如此,不少人只会用框架,看不懂源码,不了解其底层机制与实现原理,成了一名只会搬运源码库的开发。说白了,就是真正牛逼的技术不属于你。可了解框架中的很多知识和代码,对解决开发中的类似问题是极其有帮助的。因为它们是经过时..

  • pip安装scrapy失败_scrapy框架运行

    pip安装scrapy失败_scrapy框架运行错误如图所示,running setup.py install for Twisted…..errorTwisted依赖库安装报错,重新下载手动安装一下下载网址:https://www.lfd.uci.edu/~gohlke/pythonlibs注意:看下安装的python是什么版本,我安装的python 3.9.0,就下载cp39,64位的下载安装的版本不对,就会报:Twisted-20.3.0-cp38-cp38-win_amd64.whl is not a support…

  • iDB-数据库自动化运维平台

    iDB-数据库自动化运维平台数据库,MySQL,自动化运维,AutoDDL,刷库,帐号授权,审核,回滚提纲:

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号