python社交网络分析_python编程:从入门到实践

python社交网络分析_python编程:从入门到实践NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)输出结果1、测试对象data1=’今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!’data2=’今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!’data3=’美国华裔科学家,祖籍江苏扬州市高邮县,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)

 

 

 

 

目录

输出结果

设计思路

相关资料

1、关于代码

2、关于数据集

关于留言

1、留言内容的注意事项

2、如何留言?

2.1、第一种方法——在对应的博客下留言

2.2、备用第二种方法——论坛发帖

后续补充发放资料的说明

主要部分代码实现


 

 

输出结果

1、测试对象
data1= ‘今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!’
data2= ‘今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!’
data3= ‘美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!’

2、输出结果
很明显,data1情感更加积极!data2情感消极!data3情感中等!

[[240.0, 104.0, 8.3, 3.6, 8.0, 2.4]]
[[0.0, 134.0, 0.0, 4.8, 0.0, 3.2]]
[[2, 66, 0.1, 3.3, 0.4, 1.7]]
[[2, 2, 0.1, 0.1, 0.4, 0.4]]

 

设计思路

后期更新……

 

 

相关资料

1、关于代码

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码
 

2、关于数据集

如需数据集,请留言向博主索取。
:当前为学生身份的网友,可留言向博主索取。非学生身份的社会人士,请靠积分下载!

python社交网络分析_python编程:从入门到实践

python社交网络分析_python编程:从入门到实践

 

 

关于留言

1、留言内容的注意事项

  • 1、请新增评论,不要直接回复,折叠后,我容易看不到,会漏掉。
  • 2、请在前缀加一个索取资料的当天日期。
  • 3、切记要留下邮箱!!!

比如留言:“20200307,早上10.11,你好,博主,我的邮箱是,我想索取……”

 

2、如何留言?

2.1、第一种方法——在对应的博客下留言

即在本博客下直接留言即可!

 

2.2、备用第二种方法——论坛发帖

在我的论坛中发帖即可,我会及时回复。
地址:https://bbs.csdn.net/topics/395531480

 

 

后续补充发放资料的说明

此类网友,太伤人心,这位网友,一定不是大学生,当代大学生的素质肯定比这位网友高的多。

python社交网络分析_python编程:从入门到实践

 

主要部分代码实现

import jieba
import numpy as np

……


def sentiment_score_list(dataset):
    seg_sentence = dataset.split('。')

    count1 = []
    count2 = []
    for sen in seg_sentence: #循环遍历每一个评论
        segtmp = jieba.lcut(sen, cut_all=False)  #把句子进行分词,以列表的形式返回
        i = 0 #记录扫描到的词的位置
        a = 0 #记录情感词的位置
        poscount = 0 #积极词的第一次分值
        poscount2 = 0 #积极词反转后的分值
        poscount3 = 0 #积极词的最后分值(包括叹号的分值)
        negcount = 0
        negcount2 = 0
        negcount3 = 0
        for word in segtmp:
            if word in posdict:  # 判断词语是否是情感词
                poscount += 1
                c = 0
                for w in segtmp[a:i]:  # 扫描情感词前的程度词
                    if w in mostdict:
                        poscount *= 4.0
                    elif w in verydict:
                        poscount *= 3.0
                    elif w in moredict:
                        poscount *= 2.0
                    elif w in ishdict:
                        poscount *= 0.5
                    elif w in deny_word:
                        c += 1
                if judgeodd(c) == 'odd':  # 扫描情感词前的否定词数
                    poscount *= -1.0
                    poscount2 += poscount
                    poscount = 0
                    poscount3 = poscount + poscount2 + poscount3
                    poscount2 = 0
                else:
                    poscount3 = poscount + poscount2 + poscount3
                    poscount = 0
                a = i + 1  # 情感词的位置变化

            elif word in negdict:  # 消极情感的分析,与上面一致
                negcount += 1
                d = 0
                for w in segtmp[a:i]:
                    if w in mostdict:
                        negcount *= 4.0
                    elif w in verydict:
                        negcount *= 3.0
                    elif w in moredict:
                        negcount *= 2.0
                    elif w in ishdict:
                        negcount *= 0.5
                    elif w in degree_word:
                        d += 1
                if judgeodd(d) == 'odd':
                    negcount *= -1.0
                    negcount2 += negcount
                    negcount = 0
                    negcount3 = negcount + negcount2 + negcount3
                    negcount2 = 0
                else:
                    negcount3 = negcount + negcount2 + negcount3
                    negcount = 0
                a = i + 1
            elif word == '!' or word == '!':  ##判断句子是否有感叹号
                for w2 in segtmp[::-1]:  # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
                    if w2 in posdict or negdict:
                        poscount3 += 2
                        negcount3 += 2
                        break
            i += 1 # 扫描词位置前移


            # 以下是防止出现负数的情况
            pos_count = 0
            neg_count = 0
            if poscount3 < 0 and negcount3 > 0:
                neg_count += negcount3 - poscount3
                pos_count = 0
            elif negcount3 < 0 and poscount3 > 0:
                pos_count = poscount3 - negcount3
                neg_count = 0
            elif poscount3 < 0 and negcount3 < 0:
                neg_count = -poscount3
                pos_count = -negcount3
            else:
                pos_count = poscount3
                neg_count = negcount3

            count1.append([pos_count, neg_count])
        count2.append(count1)
        count1 = []

    return count2

def sentiment_score(senti_score_list):
    score = []
    for review in senti_score_list:
        score_array = np.array(review)
        Pos = np.sum(score_array[:, 0])
        Neg = np.sum(score_array[:, 1])
        AvgPos = np.mean(score_array[:, 0])
        AvgPos = float('%.1f'%AvgPos)
        AvgNeg = np.mean(score_array[:, 1])
        AvgNeg = float('%.1f'%AvgNeg)
        StdPos = np.std(score_array[:, 0])
        StdPos = float('%.1f'%StdPos)
        StdNeg = np.std(score_array[:, 1])
        StdNeg = float('%.1f'%StdNeg)
        score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
    return score



data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'
data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
print(sentiment_score(sentiment_score_list(data1)))
print(sentiment_score(sentiment_score_list(data2)))
print(sentiment_score(sentiment_score_list(data3)))

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/169261.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • input 事件监听

    input 事件监听1、change事件,在input失去焦点才会考虑触发,它的缺点是无法实时响应,与blur事件有着相似的功能,但与blur事件不同的是,change事件在输入框的值未改变时并不会触发,当输入框的值和上一次的值不同,并且输入框失去焦点,就会触发change事件。2、input事件,需要实时检测input输入框的值的时候,就需要用到h5的新事件:input事件了,input事件可以实现对input…

  • 字典树的数据结构_数据结构快速排序

    字典树的数据结构_数据结构快速排序本文主要包括以下内容:Trie字典树的基本概念Trie字典树的基本操作插入查找前缀查询删除基于链表的Trie字典树Set性能对比LeetCode相关线段树的问题LeetCode第208号问题LeetCode第211号问题LeetCode第677号问题Trie字典树的基本概念上一篇我们介绍了线段树(SegmentTree),本文主要介绍Trie字典树…

  • php curl_init undefined,php运行出现Call to undefined function curl_init()的解决方法

    php curl_init undefined,php运行出现Call to undefined function curl_init()的解决方法在装好PHP后,执行类似$ch=curl_init();这样的语句,出现Calltoundefinedfunctioncurl_init()的错误提示。解决方法如下:1、在php.ini中找到extension=php_curl.dll,去掉前面的,php.ini一般在c:\windows下面。2、在php.ini中找到extension_dir=“ext”,去掉前面的;,改为ex…

  • dos命令打开文件夹_dos命令开启无线网络

    dos命令打开文件夹_dos命令开启无线网络如何用dos命令查看文件?首先通过cd进入文件所在目录,然后执行start命令即可。【startfileName】:打开文件

    2022年10月14日
  • xml转json工具类_json文件导入数据库

    xml转json工具类_json文件导入数据库点击:http://xmlgrid.appspot.com

  • zencart的html文件,zencart模板 哪儿有zencart免费模版?

    zencart的html文件,zencart模板 哪儿有zencart免费模版?才接触zencart,但是代码,css+div都懂,毕竟自己不是美工。现在有个B2教你一个方法,把模板down下来,然后先通过CSS+div修改成适合zencart的标签。哪里有漂亮的zencart模板?免费的如果作者只是玩玩,建议你去zencart国内论坛的模板下载区看看如果是商用,免费模板一般都是拿来作为基础模板进行修改的。哪儿有zencart免费模版?zencart模板里,如何实现在商…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号