在毕设中学习01——python、正态和标准正态分布、matlab数据文件导出

在毕设中学习01——python、正态和标准正态分布、matlab数据文件导出在毕设中学习——卷积、python(0521)2022.5.21文章目录在毕设中学习——卷积、python(0521)正态分布标准正态分布matplotlib.pyplot画图Python中读取.m文件np.random.normal()正态分布numpy.random.normal(loc=0,scale=1e-2,size=shape)意义如下:参数loc(float):正态分布的均值,对应着这个分布的中心。loc=0说明这一个以Y轴为对称轴的正态分布,参数scale(float):

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在毕设中学习——卷积、python(0521)

2022.5.21

  • np.random.normal()正态分布

numpy.random.normal(loc=0,scale=1e-2,size=shape)

意义如下:

  1. 参数loc(float):正态分布的均值,对应着这个分布的中心。loc=0说明这一个以Y轴为对称轴的正态分布,
  2. 参数scale(float):正态分布的标准差,对应分布的宽度,scale越大,正态分布的曲线越矮胖,scale越小,曲线越高瘦。
  3. 参数size(int 或者整数元组):输出的值赋在shape里,默认为None。

np.random.standard_normal(size=None)返回指定形状的标准正态分布的数组。

正态分布

期望值(均值)μ,标准差σ(方差开根号)

请添加图片描述
请添加图片描述

补充一下标准差:
标准差是一组数据平均值分散程度的一种度量。一个较小的标准差,代表这些数值较接近平均值。
两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差
  • 对称性质(那个小尾巴叫sigma)
    请添加图片描述

  • 最大值
    请添加图片描述

  • 参数变化性质

请添加图片描述
请添加图片描述

  • sigma原则
    请添加图片描述
  • 正态分布图像
    在这里插入图片描述

标准正态分布

请添加图片描述

期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。

matplotlib.pyplot画图

引例

import matplotlib.pyplot as plt
import numpy as np
 #随机生成100个符合标准正太分布的数(均值为0,方差为1)
# x1 = np.random.standard_normal(100) 
x1 = np.random.normal()

print(x1)

# 画图看分布状况
# 1)创建画布
plt.figure(figsize=(20, 8), dpi=300) #画布长 宽 分辨率

# 2)绘制直方图 
plt.hist(x1, 10)  #参数1代表要使用的数据,参数2表示要划分区间数量

# 3)显示图像
plt.show()

请添加图片描述

  • 关于matplotlib.pyplot
    等待补充

Python中读取.mat文件

(针对的是BCI大赛第二届第三组数据-左右手运动想象EEG的matlab的训练集数据文件)

  • .m文件是保存一段代码的文件,类似于C语言中的一个函数体; 这也是MATLAB中最常见的文件保存格式之一;
  • .mat文件是matlab的数据存储的标准格式。也就是操作产生的数据的一个集合包,可以把一次处理的结果保存,供下一次使用。
import scipy.io as scio
import numpy as np

filepath = '文件路径'  					  #注意路劲里的斜杠涉及到转义字符,要用双斜线
dict_labels = scio.loadmat(filepath)	#获取到.m文件里的数据(数据类型是字典:6key-6value)
#查看数据类型print(type(变量名))

EEG_labels = dict_labels['x_test']      #这一步把'x_test'这个key对应的value给到了前面的变量

# 注解:
#本人所用的文件(dict_labels)的Key有六个,前三个是基本信息,后三个有用,如下
#dict_keys(['__header__', '__version__', '__globals__', 'Copyright', 'x_train', #'x_test', 'y_train'])
#查看这个文件的key值 a=dict_labels.keys(); print(a)
#查看这个文件的value值 b=dict_labels.values();print(b)

EEG_labels = np.array(EEG_labels)   #将EEG_labels转换为矩阵数据
print(EEG_labels.shape)  		 #输出这个矩阵的形状,发现是一个三维数组
#输出(1152, 3, 140)

#如果想要查看这个'x_test'对应的value的所有值
#print(EEG_labels) 
#此处和上方输出值的时候由于数据量到达48万并且每个数据的小数位数都超过10位了,所以python会加省略号输出,导致我们无法看到数据原本的样子,可以再输出前加上下面这句,就不会有省略号

np.set_printoptions(threshold=sys.maxsize) #全部输出

#48万个数据确实很大,可以输出到文件
#(也就是完成了把.mat文件里的数据读出到普通文件)

# fp = open("新的文件地址", "a+") 
#打开文件,a+表示,如果文件不存在就创建。存在就在文件内容的后面继续追加
# print(dict_labels.values(), file=fp) #这样就会输出到fp指向的文件
# fp.close() #关闭文件


#简单的说,打开.m文件:
# from scipy.io import loadmat
# a = loadmat('文件路径')
print(a)
print(type(a))
print(a.values()) //先确定a是字典类型哈

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/168456.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Pycharm 全局搜索 find in path 失效,不起作用「建议收藏」

    Pycharm 全局搜索 find in path 失效,不起作用「建议收藏」最近写代码发现每个项目下的搜索都不能正常显示所有,原因是因为pycharm缓存过多需要清理,路径:file->InvalidateCaches/Restart重启完后一切正常,又可以愉快的搬砖了>>__<<

  • 关于尺度空间的理解和认识_尺度空间理论

    关于尺度空间的理解和认识_尺度空间理论通常会听到尺度变化等这类词语,看到的也总是一堆的数学公式,有时候真的不知道这到底有啥用,有啥意义,没有弄懂这些意义,当然就更不可能的理解,不可能去掌握应用它了,现在我才理解,小波变化其实也是一种尺度变化。今天我看到一篇南航数学系写的关于尺度空间解释的文章,感觉很通俗易懂,我们不从数学上来推倒什么是尺度空间,只是从生活常识方面来解释尺度空间的意义,意义懂了,数学方面自然就好理解了。       

    2022年10月11日
  • 大数据数据集下载_免费数据库有哪些

    大数据数据集下载_免费数据库有哪些“聚数据”平台整理了网上开放的免费科研数据集,以下是分类列表以及下载地址,供高校和科研机构免费下载和使用。以下内容转自https://blog.csdn.net/qq_32447301/article/details/79487335金融美国劳工部统计局官方发布数据 上证A股日线数据,1999.12.09至2016.06.08,前复权,1095支股票 深证A股日线数据,1999…

    2022年10月17日
  • Tomcat部署war包项目请求404「建议收藏」

    Tomcat部署war包项目请求404「建议收藏」Tomcat部署war包请求404

  • updog云盘_dog意思

    updog云盘_dog意思pip3installupdog#安装注意必须基于 python3.x 进行安装updog-d目录-p端口–password密码#开启云盘服务在关闭命令

  • CAS单点登录原理(包含详细流程,讲得很透彻,耐心看下去一定能看明白!)

    CAS单点登录原理(包含详细流程,讲得很透彻,耐心看下去一定能看明白!)转载地址http://www.cnblogs.com/lihuidu/p/6495247.html1、基于Cookie的单点登录的回顾    基于Cookie的单点登录核心原理:   将用户名密码加密之后存于Cookie中,之后访问网站时在过滤器(filter)中校验用户权限,如果没有权限则从Cookie中取出用户名密码进行登录,让用户从某种意义上觉得只登录了一次。   该方式缺…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号