二项分布方差的详细证明##前置技能从组合数公式可以直接推出:$k\mathrm{C}_n^k=n\mathrm{C}_{n-1}^{k-1}$同样地,你可以得到$(k-1)\mathrm{C}_{n-1}^{
大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
前置技能
从组合数公式可以直接推出: \(k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}\)
同样地,你可以得到 \((k-1)\mathrm{C}_{n-1}^{k-1} = (n-1)\mathrm{C}_{n-2}^{k-2}\) (禁止套娃)
你还要熟悉二项式定理:
\[(p+q)^n = \sum_{k=0}^n \mathrm{C}_n^k p^k q^{n-k} \]
你还要知道二项分布的概率和期望公式:
若 \(X\sim B(n,p)\),则 \(P(x = k) = C_n^k \ p^k \ (1-p)^{n- k}\),\(E(X) = np\)
回归正题
第一步当然是定义式啦
\[\begin{aligned} D(X) &=\sum_{k=0}^{n}\left[k-E(X)\right]^{2} \cdot p_{k} \\ &=\sum_{k=0}^{n}(k-n p)^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ \end{aligned} \]
看到 \((k-np)^2\) 是不是就很想把它拆开?
\[\begin{aligned} D(X) &=\sum_{k=0}^{n}(k^2-2knp+n^2p^2) \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ & =\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \end{aligned} \]
这式子也太长了吧 (#°Д°)
首先你肯定会把魔爪伸向 \(\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) —— 他就是个二项式定理嘛!
\[\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} = (p+q)^n=1 \]
然后,你看到 \(\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 里面的 \(\color{Blue}{k \cdot \mathrm{C}_{n}^{k}}\) 的时候,是不是有把 \(\color{Blue}{k\cdot \mathrm{C}_n^k}\) 换成 \(n\cdot\mathrm{C}_{n-1}^{k-1}\) 的冲动?
\[\begin{aligned} &\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \quad \text{(第一项是 0, 丢掉)}\\ =& \sum_{k=1}^{n} n \cdot \mathrm{C}_{n-1}^{k-1} p^{k} q^{n-k} \\ =& np \cdot \sum_{k=1}^{n} \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np \cdot (p+q)^{n-1} \\ =& np \end{aligned} \]
现在只剩 \(\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 了,首先你肯定会故技重施:
\[\begin{aligned} &\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ =& \sum_{k=1}^{n} kp \cdot n \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \end{aligned} \]
但是 \(\mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\) 前面还有个 \(k\) 啊,不能用啊 (ノ`Д)ノ
所以,怎么把这个 \(k\) 搞掉呢???(我认为这是最难的一步,读者可以停下来思考思考)
你肯定想用 \((k-1) \mathrm{C}_{n-1}^{k-1} = (n-1) \mathrm{C}_{n-2}^{k-2}\),但人家是 \(k\mathrm{C}_{n-1}^{k-1}\) 不是 \((k-1) \mathrm{C}_{n-1}^{k-1}\) 啊
那就……把 \(k\) 拆成 \((k-1+1)\) 吧!(我真是太机智了)
\[\begin{aligned} & \color{Red}{np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}} \\ =& np\sum_{k=1}^{n} (k-1+1) \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} \left[(k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \sum_{k=1}^n \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (n-1)p \cdot \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + (p+q)^{n-1}\right] \\ =& np \left[(n-1)p \cdot \sum_{k=2}^{n} \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + 1\right] \\ =& np \left[(n-1)p \cdot (p+q)^{n-2} + 1\right] \\ =& np \left[(n-1)p + 1\right] \\ =& np(np-p+1) \end{aligned} \]
终于!三个部分都推完了!!
\[\begin{aligned} &D(X) \\ =&\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& np(np-p+1) -2np\cdot np +n^2p^2 \\ =& np(1-p) \end{aligned} \]
证毕( ̄︶ ̄)↗
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/168229.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】:
Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】:
官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...