大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
牛顿法,大致的思想是用泰勒公式的前几项来代替原来的函数,然后对函数进行求解和优化。牛顿法和应用于最优化的牛顿法稍微有些差别。
牛顿法
牛顿法用来迭代的求解一个方程的解,原理如下:
对于一个函数f(x),它的泰勒级数展开式是这样的
当使用牛顿法来求一个方程解的时候,它使用泰勒级数前两项来代替这个函数,即用\(\phi(x)代替f(x)\),其中:
令\(\phi(x) = 0\),则 \(x = x_0 – \frac{f(x_0)}{ f'(x_0)}\)。
所以,牛顿法的迭代公式是\(x_{n+1} = x_n – \frac{f(x_n)}{ f'(x_n)}\)
牛顿法求解n的平方根
求解n的平方根,其实是求方程\(x^2 -n = 0\)的解
利用上面的公式可以得到:\(x_{i+1} = x_i – \frac{x_i^2 – n}{2 x_i} = (x_i + \frac{n}{x_i} ) /2\)
编程的时候核心的代码是:x = (x + n/x)/2
应用于最优化的牛顿法
应用于最优化的牛顿法是以迭代的方式来求解一个函数的最优解,常用的优化方法还有梯度下降法。
取泰勒展开式的二次项,即用\(\phi(x)\)来代替\(f(x)\):
最优点的选择是\(\phi'(x)=0\)的点,对上式求导
令\(\phi'(x) = 0\),则\(x = x_0 – \frac{f'(x_0)}{f”(x_0)}\)
所以,最优化的牛顿迭代公式是
高维下的牛顿优化方法
在高维下
求\(\nabla \phi(x)\),并令它等于0,则公式变为了
即
所以,迭代公式变为
其中:
\(x_{n+1} ,x_n\)都是N*1维的矢量。
\(\nabla^2 f(x_n)\)是Hessien矩阵,\({\nabla ^2 f(x_n) }^{-1}\)是Hessien矩阵的逆矩阵,它们都是是N*N维的。
\(\nabla f(x_n)\)是 \(f(x)\)的导数,是N*1维的。
和梯度下降法相比,在使用牛顿迭代法进行优化的时候,需要求Hessien矩阵的逆矩阵,这个开销是很大的。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/168015.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...