皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数相关性、spss

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 一 、皮尔逊相关性

统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,简称 PPMCC或PCCs),是用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。

它是由卡尔·皮尔逊弗朗西斯·高尔顿在19世纪80年代提出的一个相似却又稍有不同的想法演变而来的。这个相关系数也称作“皮尔逊积矩相关系数”。

定义

两个变量之间的皮尔逊相关系数定义为两个变量之间的
协方差
标准差的商:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
上式定义了总体相关系数,常用希腊小写字母 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 作为代表符号。估算
样本的协方差和标准差,可得到皮尔逊相关系数,常用英文小写字母 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 代表:
 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 亦可由
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 
样本点的
标准分数均值估计,得到与上式等价的表达式:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
其中 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
分别是对皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
样本的标准分数、样本平均值和样本标准差

相关系数    

0.8-1.0     极强相关

0.6-0.8     强相关

0.4-0.6     中等程度相关

0.2-0.4     弱相关

0.0-0.2     极弱相关或无相关

使用条件

当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于:

(1)、两个变量之间是线性关系,都是连续数据。

(2)、两个变量的总体是正态分布,或接近正态的单峰分布。

(3)、两个变量的观测值是成对的,每对观测值之间相互独立。

 二、肯德尔相关性(kendall)

Kendall(肯德尔)系数的定义:n个同类的统计对象按特定属性排序,其他属性通常是乱序的。同序对(concordant pairs)和异序对(discordant pairs)之差与总对数(n*(n-1)/2)的比值定义为Kendall(肯德尔)系数。

R=(P-(n*(n-1)/2-P))/(n*(n-1)/2)=(4P/(n*(n-1)))-1

适用性

肯德尔相关系数与斯皮尔曼相关系数对数据条件的要求相同

 三、斯皮尔曼相关性(spearman)

两个变量依赖性的 非参数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或−1。

斯皮尔曼相关系数被定义成等级变量之间的
皮尔逊相关系数。对于样本容量为
n的样本,
n个原始数据被转换成等级数据,相关系数ρ为
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

 

原始数据依据其在总体数据中平均的降序位置,被分配了一个相应的等级。

 

 四、三大相关性选择

http://www.datasoldier.net/archives/716


 

扩展:
协方差(Covariance)在概率论统计学中用于衡量两个变量的总体误差
期望值分别为
E[
X]与
E[
Y]的两个实随机变量
X
Y之间的协方差
Cov(X,Y)定义为:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
期望:数学期望(mean)(或
均值,亦简称期望)是试验中每次可能结果的
概率乘以其结果的总和
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
以下是数学期望的重要性质:

1.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
2.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
3.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
4.当X和Y相互独立时,
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

又常称
均方差,是离均差平方的算术平均数的平方根,用σ表示

皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167946.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 网上常见的分享功能, 比如 点击分享到 人人 微博 空间 等都是怎么做的…

    网上常见的分享功能, 比如 点击分享到 人人 微博 空间 等都是怎么做的…

  • 新手小白学JAVA 数组 数组工具类 二维数组

    新手小白学JAVA 数组 数组工具类 二维数组1数组1.1概念数组Array,标志是[],用于储存多个相同类型数据的集合想要获取数组中的元素值,可以通过脚标(下标)来获取数组下标是从0开始的,下标的最大值是数组的长度减11.2创建数组数组的创建方式一般分为动态初始化和静态初始化动态初始化int[]a=newint[5];静态初始化int[]b=newint[]{1,2,3,4,5};int[]c={1,2,3,4,5};1.3创建数组过程分析程序创建数组int[]a=new

  • 详解九章算法的作者是谁_arrayset

    详解九章算法的作者是谁_arraysetArrayDeque方法很多,而他们按过程划分分为三种,初始化,扩容,CRUD操作。下面依次来说初始化过程中依赖一个核心的函数calculateSize,它的源码如下privatestaticintcalculateSize(intnumElements){intinitialCapacity=MIN_INITIAL_CAPACITY;//Findthebestpoweroftwotoholdelements.

  • 激光slam理论与实践_SLAM算法

    激光slam理论与实践_SLAM算法激光SLAM笔记(1)——激光SLAM框架和基本数学理论1、SLAM分类1.1、基于传感器的分类1.2、基于后端的分类2、激光SLAM算法(基于优化的算法)2.1、激光SLAM算法的流程2.2、激光SLAM常用算法2.3、激光SLAM在实际环境中的问题3、激光SLAM算法介绍3.1、2D激光SLAM3.2、3D激光SLAM1、SLAM分类1.1、基于传感器的分类1.2、基于后端的分类 …

  • 如何保证docker2375端口的安全

    如何保证docker2375端口的安全情景再现:之前有很多朋友提过,当使用docker-maven-plugin打包SpringBoot应用的Docker镜像时,服务器需要开放2375端口。由于开放了端口没有做任何安全保护,会引起安全漏洞,被人入侵、挖矿、CPU飙升这些情况都有发生,今天我们来聊聊如何解决这个问题。问题产生的原因首先我们要明白问题产生的原因,才能更好地解决问题!Docker为了实现集群管理,提供了远程管理的端口。DockerDaemon作为守护进程运行在后台,可以执行发送到管理端口上的Docker命令。当我们修改do

  • webservice技术介绍

    一、WebService到底是什么?   一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术。   所谓跨编程语言和跨操作平台,就是说服务端程序采用java编写,客户端程序则可以采用其他编程语言编写,反之亦然!跨操作系统平台则是指服务端程序和客户端程序可以在不同的操作系统上运行。    所谓远程调用,就是一台计算机a上的一个程序可以调用到另外一台

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号