大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
对抗训练
对抗训练是防御对抗样本攻击的一种方法。将对抗样本和正常样本一起训练是一种有效的正则化,可以提高模型的准确度,同时也能有效降低对抗样本的攻击成功率。不过这种防御也只是针对同样用来产生训练集中的对抗样本的方法。
探索网络对底层任务的理解层次,通过对抗训练减少原有独立同分布的测试集的错误率——在对抗扰动的训练集上训练网络
对抗样本的定义和产生
从2013年开始,深度学习模型在多种应用上已经能达到甚至超过人类水平,比如人脸识别,物体识别,手写文字识别等等。 在之前,机器在这些项目的准确率很低,如果机器识别出错了,没人会觉得奇怪。但是现在,深度学习算法的效果好了起来,去研究算法犯的那些不寻常的错误变得有价值起来。其中一种错误叫对抗样本(adversarial examples)。
对抗样本指的是一个经过微小调整就可以让机器学习算法输出错误结果的输入样本。在图像识别中,可以理解为原来被一个卷积神经网络(CNN)分类为一个类(比如“熊猫”)的图片,经过非常细微甚至人眼无法察觉的改动后,突然被误分成另一个类(比如“长臂猿”)。nemoyy
通过某种算法,针对指定的样本计算出一个变化量,该样本经过修改后,从人类的感觉无法辨识,但是却可以让该样本跨越分割平面,导致机器学习模型的判定结果改变。
简单的理解就是给样本加一些噪声扰动让其分错
对于图像方面比如更改图像的像素值让他分错~
高效的生成对抗样本
见http://www.360doc.com/content/18/0315/19/99071_737305291.shtml
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167486.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...