前端样式库_freelist数据结构

前端样式库_freelist数据结构这个过程主要分为三个步骤:数据预处理数据处理就是把数据按照一定的格式写出来,以便网路自己去读取数据1准备原始数据我的cloth数据一共是四个类别,每个类别有衣服47张,一用是188张图片,这些

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

这个过程主要分为三个步骤:

数据预处理

数据处理就是把数据按照一定的格式写出来,以便网路自己去读取数据
1准备原始数据
我的cloth数据一共是四个类别,每个类别有衣服47张,一用是188张图片,这些大小不一的原始图片转换成我们训练需要的shape。
原始数据放在同一个文件夹下面:
在这里插入图片描述
2 编程实现
制作Tfrecords,读取Tfrecords数据获得iamge和label,打印验证并保存生成的图片。


#将原始图片转换成需要的大小,并将其保存
#========================================================================================
import os  
import tensorflow as tf  
from PIL import Image  
  
#原始图片的存储位置
orig_picture = 'dataset/cloth/'#我的数据放在这个问价加下面
 
#生成图片的存储位置
gen_picture = 'dataset/image_data/inputdata/'#E:/Re_train/image_data/inputdata/'

 
#需要的识别类型
classes = {'Graphic_Ringer_Tee','Sheer_Pleated_Front_Blouse','Sheer_Sequin_Tank','Single_Button_Blazer'} 
 
#样本总数
num_samples = 188
   
#制作TFRecords数据  
def create_record():  
    writer = tf.python_io.TFRecordWriter("cloth_train.tfrecords")  
    for index, name in enumerate(classes):  
        class_path = orig_picture +"/"+ name+"/"  
        for img_name in os.listdir(class_path):  
            img_path = class_path + img_name  
            img = Image.open(img_path)  
            img = img.resize((64, 64))    #设置需要转换的图片大小
            img_raw = img.tobytes()      #将图片转化为原生bytes  
            print (index,img_raw)  
            example = tf.train.Example(  
               features=tf.train.Features(feature={  
                    "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),  
                    'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))  
               }))  
            writer.write(example.SerializeToString())  
    writer.close()  
    
#=======================================================================================
def read_and_decode(filename):  
    # 创建文件队列,不限读取的数量  
    filename_queue = tf.train.string_input_producer([filename])  
    # create a reader from file queue  
    reader = tf.TFRecordReader()  
    # reader从文件队列中读入一个序列化的样本  
    _, serialized_example = reader.read(filename_queue)  
    # get feature from serialized example  
    # 解析符号化的样本  
    features = tf.parse_single_example(  
        serialized_example,  
        features={  
            'label': tf.FixedLenFeature([], tf.int64),  
            'img_raw': tf.FixedLenFeature([], tf.string)  
        })  
    label = features['label']  
    img = features['img_raw']  
    img = tf.decode_raw(img, tf.uint8)  
    img = tf.reshape(img, [64, 64, 3])  
    #img = tf.cast(img, tf.float32) * (1. / 255) - 0.5  
    label = tf.cast(label, tf.int32)  
    return img, label  
 
#=======================================================================================
if __name__ == '__main__':  
    create_record()  
    batch = read_and_decode('cloth_train.tfrecords')  
    init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())  
      
    with tf.Session() as sess: #开始一个会话    
        sess.run(init_op)    
        coord=tf.train.Coordinator()    
        threads= tf.train.start_queue_runners(coord=coord)  
        
        for i in range(num_samples):    
            example, lab = sess.run(batch)#在会话中取出image和label    
            img=Image.fromarray(example, 'RGB')#这里Image是之前提到的 
            if lab==0:
                img.save(gen_picture+'/'+'Graphic_Ringer_Tee'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’ 
            elif lab==1:
                 img.save(gen_picture+'/'+'Sheer_Pleated_Front_Blouse'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’
            elif lab==2:
                 img.save(gen_picture+'/'+'Sheer_Sequin_Tank'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’
            elif lab==3:
                 img.save(gen_picture+'/'+'Single_Button_Blazer'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’       
            print(gen_picture+'/'+str(i)+'samples'+str(lab)+'.jpg')
            print(example, lab)    
        coord.request_stop()    
        coord.join(threads)   
        sess.close()  
        
#========================================================================================  


程序运行结束后就会生成下面的四个文件夹,里面存放就是我们需要的数据
在这里插入图片描述

将第一步生成的图片进行sample和label操作,进行batch处理


import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
 
#============================================================================
#-----------------生成图片路径和标签的List------------------------------------
 
train_dir = 'dataset/image_data/inputdata'
 
Graphic_Ringer_Tee = []
label_Graphic_Ringer_Tee = []
Sheer_Pleated_Front_Blouse = []
label_Sheer_Pleated_Front_Blouse = []
Sheer_Sequin_Tank = []
label_Sheer_Sequin_Tank = []
Single_Button_Blazer = []
label_Single_Button_Blazer = []
 
#step1:获取'E:/Re_train/image_data/training_image'下所有的图片路径名,存放到
#对应的列表中,同时贴上标签,存放到label列表中。
def get_files(file_dir, ratio):
    for file in os.listdir(file_dir+'/Graphic_Ringer_Tee'):
        Graphic_Ringer_Tee.append(file_dir +'/Graphic_Ringer_Tee'+'/'+ file) 
        label_Graphic_Ringer_Tee.append(0)
    for file in os.listdir(file_dir+'/Sheer_Pleated_Front_Blouse'):
        Sheer_Pleated_Front_Blouse.append(file_dir +'/Sheer_Pleated_Front_Blouse'+'/'+file)
        label_Sheer_Pleated_Front_Blouse.append(1)
    for file in os.listdir(file_dir+'/Sheer_Sequin_Tank'):
        Sheer_Sequin_Tank.append(file_dir +'/Sheer_Sequin_Tank'+'/'+ file) 
        label_Sheer_Sequin_Tank.append(2)
    for file in os.listdir(file_dir+'/Single_Button_Blazer'):
        Single_Button_Blazer.append(file_dir +'/Single_Button_Blazer'+'/'+file)
        label_Single_Button_Blazer.append(3)
 
#step2:对生成的图片路径和标签List做打乱处理把cat和dog合起来组成一个list(img和lab)
    image_list = np.hstack((Graphic_Ringer_Tee, Sheer_Pleated_Front_Blouse, Sheer_Sequin_Tank, Single_Button_Blazer))
    label_list = np.hstack((label_Graphic_Ringer_Tee, label_Sheer_Pleated_Front_Blouse, label_Sheer_Sequin_Tank, label_Single_Button_Blazer))
 
    #利用shuffle打乱顺序
    temp = np.array([image_list, label_list])
    temp = temp.transpose()
    np.random.shuffle(temp)
    
    #从打乱的temp中再取出list(img和lab)
    #image_list = list(temp[:, 0])
    #label_list = list(temp[:, 1])
    #label_list = [int(i) for i in label_list]
    #return image_list, label_list
    
    #将所有的img和lab转换成list
    all_image_list = list(temp[:, 0])
    all_label_list = list(temp[:, 1])
 
    #将所得List分为两部分,一部分用来训练tra,一部分用来测试val
    #ratio是测试集的比例
    n_sample = len(all_label_list)
    n_val = int(math.ceil(n_sample*ratio))   #测试样本数
    n_train = n_sample - n_val   #训练样本数
 
    tra_images = all_image_list[0:n_train]
    tra_labels = all_label_list[0:n_train]
    tra_labels = [int(float(i)) for i in tra_labels]
    val_images = all_image_list[n_train:-1]
    val_labels = all_label_list[n_train:-1]
    val_labels = [int(float(i)) for i in val_labels]
 
    return tra_images, tra_labels, val_images, val_labels
    
    
#---------------------------------------------------------------------------
#--------------------生成Batch----------------------------------------------
 
#step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
#是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
#   image_W, image_H, :设置好固定的图像高度和宽度
#   设置batch_size:每个batch要放多少张图片
#   capacity:一个队列最大多少
def get_batch(image, label, image_W, image_H, batch_size, capacity):
    #转换类型
    image = tf.cast(image, tf.string)
    label = tf.cast(label, tf.int32)
 
    # make an input queue
    input_queue = tf.train.slice_input_producer([image, label])
 
    label = input_queue[1]
    image_contents = tf.read_file(input_queue[0]) #read img from a queue  
    
#step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
    image = tf.image.decode_jpeg(image_contents, channels=3) 
    
#step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
    image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
    image = tf.image.per_image_standardization(image)
 
#step4:生成batch
#image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32 
#label_batch: 1D tensor [batch_size], dtype=tf.int32
    image_batch, label_batch = tf.train.batch([image, label],
                                                batch_size= batch_size,
                                                num_threads= 32, 
                                                capacity = capacity)
    #重新排列label,行数为[batch_size]
    label_batch = tf.reshape(label_batch, [batch_size])
    image_batch = tf.cast(image_batch, tf.float32)
    return image_batch, label_batch            
 
#========================================================================


建立神经网络模型


#=========================================================================
import tensorflow as tf
#=========================================================================
#网络结构定义
    #输入参数:images,image batch、4D tensor、tf.float32、[batch_size, width, height, channels]
    #返回参数:logits, float、 [batch_size, n_classes]
def inference(images, batch_size, n_classes):
#一个简单的卷积神经网络,卷积+池化层x2,全连接层x2,最后一个softmax层做分类。
#卷积层1
#64个3x3的卷积核(3通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
    with tf.variable_scope('conv1') as scope:
        
        weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64], stddev = 1.0, dtype = tf.float32), 
                              name = 'weights', dtype = tf.float32)
        
        biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [64]),
                             name = 'biases', dtype = tf.float32)
        
        conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(pre_activation, name= scope.name)
        
#池化层1
#3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。
    with tf.variable_scope('pooling1_lrn') as scope:
        pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],padding='SAME', name='pooling1')
        norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
 
#卷积层2
#16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
    with tf.variable_scope('conv2') as scope:
        weights = tf.Variable(tf.truncated_normal(shape=[3,3,64,16], stddev = 0.1, dtype = tf.float32), 
                              name = 'weights', dtype = tf.float32)
        
        biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [16]),
                             name = 'biases', dtype = tf.float32)
        
        conv = tf.nn.conv2d(norm1, weights, strides = [1,1,1,1],padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(pre_activation, name='conv2')
 
#池化层2
#3x3最大池化,步长strides为2,池化后执行lrn()操作,
    #pool2 and norm2
    with tf.variable_scope('pooling2_lrn') as scope:
        norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,beta=0.75,name='norm2')
        pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],padding='SAME',name='pooling2')
 
#全连接层3
#128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
    with tf.variable_scope('local3') as scope:
        reshape = tf.reshape(pool2, shape=[batch_size, -1])
        dim = reshape.get_shape()[1].value
        weights = tf.Variable(tf.truncated_normal(shape=[dim,128], stddev = 0.005, dtype = tf.float32),
                             name = 'weights', dtype = tf.float32)
        
        biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [128]), 
                             name = 'biases', dtype=tf.float32)
        
        local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
        
#全连接层4
#128个神经元,激活函数relu() 
    with tf.variable_scope('local4') as scope:
        weights = tf.Variable(tf.truncated_normal(shape=[128,128], stddev = 0.005, dtype = tf.float32),
                              name = 'weights',dtype = tf.float32)
        
        biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [128]),
                             name = 'biases', dtype = tf.float32)
        
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
 
#dropout层        
#    with tf.variable_scope('dropout') as scope:
#        drop_out = tf.nn.dropout(local4, 0.8)
            
        
#Softmax回归层
#将前面的FC层输出,做一个线性回归,计算出每一类的得分,在这里是2类,所以这个层输出的是两个得分。
    with tf.variable_scope('softmax_linear') as scope:
        weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev = 0.005, dtype = tf.float32),
                              name = 'softmax_linear', dtype = tf.float32)
        
        biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [n_classes]),
                             name = 'biases', dtype = tf.float32)
        
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
 
    return softmax_linear
 
#-----------------------------------------------------------------------------
#loss计算
    #传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
    #返回参数:loss,损失值
def losses(logits, labels):
    with tf.variable_scope('loss') as scope:
        cross_entropy =tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='xentropy_per_example')
        loss = tf.reduce_mean(cross_entropy, name='loss')
        tf.summary.scalar(scope.name+'/loss', loss)
    return loss
 
#--------------------------------------------------------------------------
#loss损失值优化
    #输入参数:loss。learning_rate,学习速率。
    #返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
def trainning(loss, learning_rate):
    with tf.name_scope('optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
        global_step = tf.Variable(0, name='global_step', trainable=False)
        train_op = optimizer.minimize(loss, global_step= global_step)
    return train_op
 
#-----------------------------------------------------------------------
#评价/准确率计算
    #输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
    #返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
def evaluation(logits, labels):
    with tf.variable_scope('accuracy') as scope:
        correct = tf.nn.in_top_k(logits, labels, 1)
        correct = tf.cast(correct, tf.float16)
        accuracy = tf.reduce_mean(correct)
        tf.summary.scalar(scope.name+'/accuracy', accuracy)
    return accuracy
 
#========================================================================


网路训练


#======================================================================
#导入文件
import os
import numpy as np
import tensorflow as tf
#import input_data
#import model
 
#变量声明
N_CLASSES = 4  #husky,jiwawa,poodle,qiutian
IMG_W = 64   # resize图像,太大的话训练时间久
IMG_H = 64
BATCH_SIZE =20
CAPACITY = 200
MAX_STEP = 200 # 一般大于10K
learning_rate = 0.0001 # 一般小于0.0001
 
#获取批次batch
train_dir = 'dataset/image_data/inputdata'   #训练样本的读入路径
logs_train_dir = 'dataset/log'    #logs存储路径
#logs_test_dir =  'E:/Re_train/image_data/test'        #logs存储路径
 
#train, train_label = input_data.get_files(train_dir)
train, train_label, val, val_label = get_files(train_dir, 0.3)
#训练数据及标签
train_batch,train_label_batch = get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
#测试数据及标签
val_batch, val_label_batch = get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) 
 
#训练操作定义
train_logits = inference(train_batch, BATCH_SIZE, N_CLASSES)
train_loss = losses(train_logits, train_label_batch)        
train_op = trainning(train_loss, learning_rate)
train_acc = evaluation(train_logits, train_label_batch)
 
#测试操作定义
test_logits = inference(val_batch, BATCH_SIZE, N_CLASSES)
test_loss = losses(test_logits, val_label_batch)        
test_acc = evaluation(test_logits, val_label_batch)
 
#这个是log汇总记录
summary_op = tf.summary.merge_all() 
 
#产生一个会话
sess = tf.Session()  
#产生一个writer来写log文件
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) 
#val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph) 
#产生一个saver来存储训练好的模型
saver = tf.train.Saver()
#所有节点初始化
sess.run(tf.global_variables_initializer())  
#队列监控
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
 
#进行batch的训练
try:
    #执行MAX_STEP步的训练,一步一个batch
    for step in np.arange(MAX_STEP):
        if coord.should_stop():
            break
        #启动以下操作节点,有个疑问,为什么train_logits在这里没有开启?
        _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
        
        #每隔50步打印一次当前的loss以及acc,同时记录log,写入writer   
        if step % 10  == 0:
            print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
            summary_str = sess.run(summary_op)
            train_writer.add_summary(summary_str, step)
        #每隔100步,保存一次训练好的模型
        if (step + 1) == MAX_STEP:
            checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)
       
except tf.errors.OutOfRangeError:
    print('Done training -- epoch limit reached')
 
finally:
    coord.request_stop()
    
#========================================================================


结果如下:
在这里插入图片描述

测试


#=============================================================================
from PIL import Image
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

#=======================================================================
#获取一张图片
def get_one_image(train):
    #输入参数:train,训练图片的路径
    #返回参数:image,从训练图片中随机抽取一张图片
    n = len(train)
    ind = np.random.randint(0, n)
    img_dir = train[ind]   #随机选择测试的图片
 
    img = Image.open(img_dir)
    plt.imshow(img)
    imag = img.resize([64, 64])  #由于图片在预处理阶段以及resize,因此该命令可略
    image = np.array(imag)
    return image
 
#--------------------------------------------------------------------
#测试图片
def evaluate_one_image(image_array):
    with tf.Graph().as_default():
       BATCH_SIZE = 1
       N_CLASSES = 4
 
       image = tf.cast(image_array, tf.float32)
       image = tf.image.per_image_standardization(image)
       image = tf.reshape(image, [1, 64, 64, 3])
 
       logit = inference(image, BATCH_SIZE, N_CLASSES)
 
       logit = tf.nn.softmax(logit)
 
       x = tf.placeholder(tf.float32, shape=[64, 64, 3])
 
       # you need to change the directories to yours.
       logs_train_dir = 'dataset/log/'
 
       saver = tf.train.Saver()
 
       with tf.Session() as sess:
 
           print("Reading checkpoints...")
           ckpt = tf.train.get_checkpoint_state(logs_train_dir)
           if ckpt and ckpt.model_checkpoint_path:
               global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
               saver.restore(sess, ckpt.model_checkpoint_path)
               print('Loading success, global_step is %s' % global_step)
           else:
               print('No checkpoint file found')
 
           prediction = sess.run(logit, feed_dict={x: image_array})
           max_index = np.argmax(prediction)
           if max_index==0:
               print('This is a 0 with possibility %.6f' %prediction[:, 0])
           elif max_index==1:
               print('This is a 1 with possibility %.6f' %prediction[:, 1])
           elif max_index==2:
               print('This is a 2 with possibility %.6f' %prediction[:, 2])
           else:
               print('This is a 3 with possibility %.6f' %prediction[:, 3])
 
#------------------------------------------------------------------------
               
if __name__ == '__main__':
    
    train_dir = 'dataset/image_data/inputdata'
    train, train_label, val, val_label = get_files(train_dir, 0.3)
    img = get_one_image(val)  #通过改变参数train or val,进而验证训练集或测试集
    evaluate_one_image(img)
#===========================================================================


结果如下:
在这里插入图片描述

来源:https://blog.csdn.net/yychentracy/article/details/85158010

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167414.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • roc曲线的意义_实用!Biomarker表达差异图、ROC曲线&四格表的实操手册「建议收藏」

    roc曲线的意义_实用!Biomarker表达差异图、ROC曲线&四格表的实操手册「建议收藏」解螺旋·蘑菇老师详细讲解biomarker研究在课题设计方面需要注意的一些共性问题,包括标本类型、样本收集以及病例资料三大部分。本期课程则汇总了biomarker研究中的典型图表以形成”图表九宫格“,并着重讲解有关biomarker表达差异(基础表达和变化趋势)、诊断标志(ROC曲线和四格表)的相关图表;同时,依据模拟数据,实操演示Graphpad、SPSS软件制作相关图表的具体步骤,学员们可按照…

  • python实现手机连续点击「建议收藏」

    python实现手机连续点击「建议收藏」第一步:手机调试到开发者模式:第二步:执行一下代码:importosdefprint_hi():os.popen(‘adbshellddif=/dev/input/event3of=/sdcard/recordtap’)os.system(‘adbshellforiin`seq1100000`;doddif=/sdcard/recordtapof=/dev/input/event3;sleep0.15;done’)if__na

  • 到底什么作用

    到底什么作用

  • 汉语拼音发音教学视频_钢琴手把手教学视频

    汉语拼音发音教学视频_钢琴手把手教学视频pycharm汉化pycharm怎么改成汉语,手把手教学,超详细(汉语插件安装教程)首先,打开pycharm。然后点击左上角File(文件)会弹出如下页面继续点击蓝色位置Settings…(设置)会弹出一个页面如下:继续点击蓝色位置Plugins(插件)在搜索栏中输入chinese,如图然后安装第二个(可以滑动找一下),点击Install(安装),会加载一下下载进度条,然后变成这样:安装之后点击绿色按钮RestartIDE,会弹出点击蓝色按钮Restart,然后pycharm会重启,重启后

  • 解决Mysql 的Access denied for user’root’@’localhost’ (using password: NO)问题

    解决Mysql 的Access denied for user’root’@’localhost’ (using password: NO)问题解决Win10下Mysql的Accessdeniedforuser’root’@’localhost’(usingpassword:YES)问题mysql一旦忘记密码即会出现这样的错误。解决步骤如下(注意cmd命令窗口必须以管理员身份打开)mysql一旦忘记密码即会出现这样的错误。解决步骤如下(注意cmd命令窗口必须以管理员身份打开)停掉mysql服务netsto…

  • java实战——图书管理系统

    因为这个写的比较完整,所以简单说明一下过程中使用的EJB和RMI两个东西。EJB实现原理:就是把原来放到客户端实现的代码放到服务器端,并依靠RMI进行通信。RMI实现原理:就是通过Java对象可序列化机制实现分布计算。好了,没了,就这么简单…想稍微深入了解一下的看一下这个好了,我就不再赘述。https://blog.csdn.net/lovechuanyu/article/…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号