大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
什么是预训练和微调?
预训练(pre-training/trained):你需要搭建一个网络来完成一个特定的图像分类的任务。首先,你需要随机初始化参数,然后开始训练网络,不断调整直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当你觉得结果很满意的时候,就可以将训练模型的参数保存下来,以便训练好的模型可以在下次执行类似任务时获得较好的结果。这个过程就是pre-training。
之后,你又接收到一个类似的图像分类的任务。这个时候,你可以直接使用之前保存下来的模型的参数来作为这一任务的初始化参数,然后在训练的过程中,依据结果不断进行一些修改。这时候,你使用的就是一个pre-trained模型,而过程就是fine-tuning。
所以,预训练就是指预先训练的一个模型或者指预先训练模型的过程;微调 就是指将预训练过的模型作用于自己的数据集,并参数适应自己数据集的过程。
微调的作用
在CNN领域中。很少人自己从头训练一个CNN网络。主要原因上自己很小的概率会拥有足够大的数据集,从头训练,很容易造成过拟合。
所以,一般的操作都是在一个大型的数据集上训练一个模型,然后使用该模型作为类似任务的初始化或者特征提取器。比如VGG,Inception等模型都提供了自己的训练参数,以便人们可以拿来微调。这样既节省了时间和计算资源,又能很快的达到较好的效果。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167169.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...