opencv 特征值_直方图阈值图像分割

opencv 特征值_直方图阈值图像分割1、简单阈值设置像素值高于阈值时,给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是cv2.threshhold()。这个函数的第一个参数就是原图像,原

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1、简单阈值设置

  像素值高于阈值时,给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。 OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:
• cv2.THRESH_BINARY
• cv2.THRESH_BINARY_INV
• cv2.THRESH_TRUNC
• cv2.THRESH_TOZERO
• cv2.THRESH_TOZERO_INV
这里写图片描述
上图摘选自《学习 OpenCV》中文版
  这个函数有两个返回值,第一个为 retVal,我们后面会解释。第二个就是阈值化之后的结果图像了.
  为了同时在一个窗口中显示多个图像,我们使用函数 plt.subplot(),可以通过查看 Matplotlib 的文档获得更多详细信息

import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('image/lufei.jpeg',0) ret,thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) ret,thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV) ret,thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC) ret,thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO) ret,thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] images = [img,thresh1,thresh2,thresh3,thresh4,thresh5] for i in xrange(6): plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()

结果图:
这里写图片描述

2 、自适应阈值

  在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。但是这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。这种方法需要我们指定三个参数,返回值只有一个。
• Adaptive Method- 指定计算阈值的方法。
– cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平均值
– cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域的加权和,权重为一个高斯窗口。
• Block Size – 邻域大小(用来计算阈值的区域大小)。
• C – 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。
  使用下面的代码来展示简单阈值与自适应阈值的差别:

import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('image/lufei.jpeg',0) img = cv2.medianBlur(img, 5) ret,th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) titles = ['Original','Global Thresholding(v = 127)','Adaptive Mean Thresholding','Adaptive Gaussian Thresholding'] images = [img,th1,th2,th3] for i in xrange(4): plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()

结果图:
这里写图片描述

3 、Otsu’s 二值化

  在第一部分中我们提到过 retVal,当我们使用 Otsu 二值化时会用到它。那么它到底是什么呢?在使用全局阈值时,就是随便给了一个数来做阈值,那我们怎么知道选取的这个数的好坏呢?答案就是不停的尝试。如果是一幅双峰图像(双峰图像是指图像直方图中存在两个峰)我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一幅双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。
  这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数(flag): cv2.THRESH_OTSU。这时要把阈值设为 0。然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。
  下面的例子中,输入图像是一副带有噪声的图像。第一种方法,设127 为全局阈值。第二种方法,直接使用 Otsu 二值化。第三种方法,首先使用一个 5×5 的高斯核除去噪音,然后再使用 Otsu 二值化。看看噪音去除对结果的影响有多大吧。

import cv2
import numpy as np 
from matplotlib import pyplot as plt 

img = cv2.imread('image/lufei.jpeg',0) ret1,th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) ret2,th2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) blur = cv2.GaussianBlur(img, (5,5), 0) ret3,th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) images = [img,0,th1,img,0,th2,blur,0,th3] titles = ['Original Noisy Image','Histogram','Global Threshilding(v = 127)', 'Original Noisy Image','Histogram',"Otsu's Thresholding", 'Gaussian fifltered Image','Histogram',"Otsu's Thresholding",] for i in xrange(3): plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray') plt.title(titles[i*3]),plt.xticks([]),plt.yticks([]) plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256) plt.title(titles[i*3+1]),plt.xticks([]),plt.yticks([]) plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray') plt.title(titles[i*3+2]),plt.xticks([]),plt.yticks([]) plt.show()

结果图:
这里写图片描述

4 、Otsu’s 二值化是如何工作的

  在这一部分演示怎样使用 Python 来实现 Otsu 二值化算法,从而告诉大家它是如何工作的。因为是双峰图, Otsu 算法就是要找到一个阈值(t), 使得同一类加权方差最小,需要满足下列关系式:
这里写图片描述
  其实就是在两个峰之间找到一个阈值 t,将这两个峰分开,并且使每一个峰内的方差最小。实现这个算法的 Python 代码如下:

import cv2
import numpy as np img = cv2.imread('image/lufei.jpeg',0) blur = cv2.GaussianBlur(img, (5,5), 0) hist = cv2.calcHist([blur], [0], None, [256], [0,256]) hist_norm = hist.ravel()/hist.max() Q = hist_norm.cumsum() bins = np.arange(256) fn_min = np.inf thresh = -1 for i in xrange(1,256): p1,p2 = np.hsplit(hist_norm, [i]) q1,q2 = Q[i],Q[255]-Q[i] b1,b2 = np.hsplit(bins, [i]) m1,m2 = np.sum(p1*b1)/q1,np.sum(p2*b2)/q2 v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2 fn = v1*q1 + v2*q2 if fn < fn_min: fn_min = fn thresh = i ret,otsu = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) print thresh,ret
 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/166885.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 【第三篇】Spring-Session实现Session共享实现原理以及源码解析「建议收藏」

    知其然,还要知其所以然 !本篇介绍Spring-Session的整个实现的原理。以及对核心的源码进行简单的介绍!实现原理介绍实现原理这里简单说明描述: 就是当Web服务器接收到http请求后,当请求进入对应的Filter进行过滤,将原本需要由web服务器创建会话的过程转交给Spring-Session进行创建,本来创建的会话保存在Web服务器内存中,通过Spring-…

  • Android —facebook/litho框架 超实用的入门干货

    Android —facebook/litho框架 超实用的入门干货可能很多人不知道litho是什么,我这里简单说一下litho就是用代码写布局。嗯,就是那么简单。或许你会问为什么用代码来写呢我xml用的挺好也方便,至于这些问题我都不会回答(坏笑)说了是干货所以肯定以代码为主所以这些介绍我能省就省了。其实网上有很多大神从框架层面介绍了litho的好处和作用,可以解答这些问题。读完之后就知道litho的好处啦。但可惜的是介绍litho用法的文章却是少之又少…

  • 【已解决】MySQL Connector Net 卸载不了问题?

    【已解决】MySQL Connector Net 卸载不了问题?今天mysql出现了一些问题,想要全部卸载重新安装,控制面板中右键卸载,发现MySQLConnectorNet无法卸载。百度上搜索发现回答都是复制粘贴,千篇一律,都是检查C盘文件是否删除干净,还有就是注册表是否删除干净;使用这些方法均不能完成卸载,重装mysql。不断搜索发现一方法可行进行分享:1.微软的支持里面有一个Fixproblemsthatblockprogramsfrombeinginstalledorremoved,链接https://support.micros

  • NTP 协议介绍_什么是UTC协议

    NTP 协议介绍_什么是UTC协议NTP协议NTP(NetworkTimeProtocol,网络时间协议)是由RFC1305定义的时间同步协议,用来在分布式时间服务器和客户端之间进行时间同步。NTP基于UDP报文进行传输,使用的UDP端口号为123。使用NTP的目的是对网络内所有具有时钟的设备进行时钟同步,使网络内所有设备的时钟保持一致,从而使设备能够提供基于统一时间的多种应用。对于运行NTP的本地系统,既可以接收来…

    2022年10月12日
  • Java:StringBuilder的基本使用

    Java:StringBuilder的基本使用概述StringBuilder表面看起来是用来拼接、处理字符串的一个工具类,但它的内部实现其实是处理字符序列。StringBuilder比String具有使用更加方便、运行效率更高的特点。StringBuffer是在StringBuilder的基础上多了线程安全(同步访问)。拼接、反序、替换、删减、插入append(),用于拼接,可接受字符串以及所有的基本数据类型的数据。StringBuildersb=newStringBuilder();sb.ap

  • stm32cubemx安装教程(包含安装包)

    目录1、安装JRE环境2、安装STM32CubeMX3、HAL库安装(可不安装)在线安装离线安装4、安装完成这个是使用Java开发的一个工具,所以要先安装JRE环境。1、安装JRE环境下载路径:a、官网:https://www.java.com/en/download/manual.jspb、自己百度或者下方留个邮箱下载完安装包后,点击安装,如下(若不想使用默认路径,记得在左下方勾选“更改目标文件夹”)。选择安装 修改安装路径,点击下一步 ..

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号