大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
1. cuda的安装
到 https://developer.nvidia.com/cuda-downloads (旧:URL )去下载。在安装的时候一定要自定义安装,否则将会安装很多无用的东西。安装的选项,可以选择不更新驱动程序。
或者下载离线文件安装
安装,选择自定义安装。
安装后,和英伟达cuda相关的程序如下图所示。
注意,千万不要勾选 Nsight Visual Studio Edition 2019.2等类似的无用的东西。
2. 测试环境是否安装成功
运行cmd,输入nvcc --version
即可查看版本号;
set cuda
,可以查看cuda设置的环境变量。
3. 运行官方自带的demo
在任务管理器中搜索,Browse CUDA Samples。 或者一般位于 C:\ProgramData\NVIDIA Corporation\CUDA Samples
未编译前,Debug文件夹中只有三个文件,如图。
成功编译后这个位置(具体路径见上图)将生成很多文件,在其中找到deviceQueryDrv.exe的程序拖入到cmd中,回车运行。
4. 自己配置cuda项目
(1)打开vs2017,创建一个空win32程序,即cuda_test项目。
(2)选择cuda_test,点击右键–>项目依赖项–>自定义生成,选择CUDA10.1。
(3)右键源文件文件夹->添加->新建项->选择CUDA C/C++File,取名cuda_main。
(4)点击cuda_main.cu的属性,在配置属性–>常规–>项类型–>选择“CUDA C/C++”。
注意:以下步骤中的项目属性设置均针对x64。
(5)包含目录配置:
右键点击项目属性–>属性–>配置属性–>VC++目录–>包含目录
添加包含目录:$(CUDA_PATH)\include
(6)库目录配置
VC++目录–>库目录
添加库目录:$(CUDA_PATH)\lib\x64
(7)依赖项
配置属性–>链接器–>输入–>附加依赖项
添加库文件:cublas.lib;cuda.lib;cudadevrt.lib;cudart.lib;cudart_static.lib;OpenCL.lib
cuda_main.cu代码如下:
#include "cuda_runtime.h" #include "cublas_v2.h" #include <time.h> #include <iostream> using namespace std; // 定义测试矩阵的维度 int const M = 5; int const N = 10; int main() { // 定义状态变量 cublasStatus_t status; // 在 内存 中为将要计算的矩阵开辟空间 float *h_A = (float*)malloc(N*M * sizeof(float)); float *h_B = (float*)malloc(N*M * sizeof(float)); // 在 内存 中为将要存放运算结果的矩阵开辟空间 float *h_C = (float*)malloc(M*M * sizeof(float)); // 为待运算矩阵的元素赋予 0-10 范围内的随机数 for (int i = 0; i < N*M; i++) { h_A[i] = (float)(rand() % 10 + 1); h_B[i] = (float)(rand() % 10 + 1); } // 打印待测试的矩阵 cout << "矩阵 A :" << endl; for (int i = 0; i < N*M; i++) { cout << h_A[i] << " "; if ((i + 1) % N == 0) cout << endl; } cout << endl; cout << "矩阵 B :" << endl; for (int i = 0; i < N*M; i++) { cout << h_B[i] << " "; if ((i + 1) % M == 0) cout << endl; } cout << endl; /* ** GPU 计算矩阵相乘 */ // 创建并初始化 CUBLAS 库对象 cublasHandle_t handle; status = cublasCreate(&handle); if (status != CUBLAS_STATUS_SUCCESS) { if (status == CUBLAS_STATUS_NOT_INITIALIZED) { cout << "CUBLAS 对象实例化出错" << endl; } getchar(); return EXIT_FAILURE; } float *d_A, *d_B, *d_C; // 在 显存 中为将要计算的矩阵开辟空间 cudaMalloc( (void**)&d_A, // 指向开辟的空间的指针 N*M * sizeof(float) // 需要开辟空间的字节数 ); cudaMalloc( (void**)&d_B, N*M * sizeof(float) ); // 在 显存 中为将要存放运算结果的矩阵开辟空间 cudaMalloc( (void**)&d_C, M*M * sizeof(float) ); // 将矩阵数据传递进 显存 中已经开辟好了的空间 cublasSetVector( N*M, // 要存入显存的元素个数 sizeof(float), // 每个元素大小 h_A, // 主机端起始地址 1, // 连续元素之间的存储间隔 d_A, // GPU 端起始地址 1 // 连续元素之间的存储间隔 ); cublasSetVector( N*M, sizeof(float), h_B, 1, d_B, 1 ); // 同步函数 cudaThreadSynchronize(); // 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。 float a = 1; float b = 0; // 矩阵相乘。该函数必然将数组解析成列优先数组 cublasSgemm( handle, // blas 库对象 CUBLAS_OP_T, // 矩阵 A 属性参数 CUBLAS_OP_T, // 矩阵 B 属性参数 M, // A, C 的行数 M, // B, C 的列数 N, // A 的列数和 B 的行数 &a, // 运算式的 α 值 d_A, // A 在显存中的地址 N, // lda d_B, // B 在显存中的地址 M, // ldb &b, // 运算式的 β 值 d_C, // C 在显存中的地址(结果矩阵) M // ldc ); // 同步函数 cudaThreadSynchronize(); // 从 显存 中取出运算结果至 内存中去 cublasGetVector( M*M, // 要取出元素的个数 sizeof(float), // 每个元素大小 d_C, // GPU 端起始地址 1, // 连续元素之间的存储间隔 h_C, // 主机端起始地址 1 // 连续元素之间的存储间隔 ); // 打印运算结果 cout << "计算结果的转置 ( (A*B)的转置 ):" << endl; for (int i = 0; i < M*M; i++) { cout << h_C[i] << " "; if ((i + 1) % M == 0) cout << endl; } // 清理掉使用过的内存 free(h_A); free(h_B); free(h_C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); // 释放 CUBLAS 库对象 cublasDestroy(handle); getchar(); return 0; }
5 使用VS下的模板创建
打开VS 2017,我们可以观察到,在VS2017模板一栏下方出现了“NVIDIA/CUDA 10.1”。
直接新建一个CUDA 10.1 Runtime 项目。
右键项目 → 属性 → 配置属性 → 链接器 → 常规 → 附加库目录,添加以下目录:
$(CUDA_PATH_V10_0)\lib$(Platform)
示例代码如下:
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> int main() { int deviceCount; cudaGetDeviceCount(&deviceCount); int dev; for (dev = 0; dev < deviceCount; dev++) { int driver_version(0), runtime_version(0); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, dev); if (dev == 0) if (deviceProp.minor = 9999 && deviceProp.major == 9999) printf("\n"); printf("\nDevice%d:\"%s\"\n", dev, deviceProp.name); cudaDriverGetVersion(&driver_version); printf("CUDA驱动版本: %d.%d\n", driver_version / 1000, (driver_version % 1000) / 10); cudaRuntimeGetVersion(&runtime_version); printf("CUDA运行时版本: %d.%d\n", runtime_version / 1000, (runtime_version % 1000) / 10); printf("设备计算能力: %d.%d\n", deviceProp.major, deviceProp.minor); printf("Total amount of Global Memory: %u bytes\n", deviceProp.totalGlobalMem); printf("Number of SMs: %d\n", deviceProp.multiProcessorCount); printf("Total amount of Constant Memory: %u bytes\n", deviceProp.totalConstMem); printf("Total amount of Shared Memory per block: %u bytes\n", deviceProp.sharedMemPerBlock); printf("Total number of registers available per block: %d\n", deviceProp.regsPerBlock); printf("Warp size: %d\n", deviceProp.warpSize); printf("Maximum number of threads per SM: %d\n", deviceProp.maxThreadsPerMultiProcessor); printf("Maximum number of threads per block: %d\n", deviceProp.maxThreadsPerBlock); printf("Maximum size of each dimension of a block: %d x %d x %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]); printf("Maximum size of each dimension of a grid: %d x %d x %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]); printf("Maximum memory pitch: %u bytes\n", deviceProp.memPitch); printf("Texture alignmemt: %u bytes\n", deviceProp.texturePitchAlignment); printf("Clock rate: %.2f GHz\n", deviceProp.clockRate * 1e-6f); printf("Memory Clock rate: %.0f MHz\n", deviceProp.memoryClockRate * 1e-3f); printf("Memory Bus Width: %d-bit\n", deviceProp.memoryBusWidth); } return 0; }
参考文章
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/166473.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...