大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
————————————————
版权声明:本文为CSDN博主「KFXW」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u010158659/article/details/77878296
任务介绍
步态识别是生物特征识别方法的一种。其基本目标是通过获取一段待检测行人正常行走的视频,与已经存储好的行人行走视屏做对比,找出待检测行人的对应于数据库中人物的身份。其优点在于检测的过程无感、非接触、不需要其它人为参与。
在数据库中存储的视频被称为gallery,用来作为测试输入、待匹配的视频成为prob。
GEI
步态识别任务的一个重要问题是特征的提取。为了用简单的方法提取出视屏中有用的信息,目前常用的方法是提取步态能量图(Gait Energy Image, GEI)。
其提取方法是:
- 在视频中检测行人位置,使用分割/Matting/背景建模等方式得到行人的掩膜(mask),或行人轮廓(silhouette);
- 将含有行人的部分图片切割出来,使用几何重心或者其他固定的点对各帧的掩膜进行对齐;
- 将各个帧的掩膜进行相加平均,即得到GEI。
其过程如图所示:
该方法较为简单,但是相比其他特征更加稳定和有效[1]。
一些文章也在GEI的基础上探索更优的特征表达。
如[2]中,作者使用三维卷积来处理视频中各帧的行人轮廓,同时在讨论中认为使用LSTM等模型来处理此时序信息会更加有效。
[3]中作者使用GAN生成跨视角的GEI,以较偏的、步态信息较少的视角的GEI作为输入,生成行人侧面(90°)的GEI。
常见数据库介绍
CASIA-B
该数据库[4]是2005年提出的。数据库中包含了124个不同身份的行人,包括31位女性和93位男性。针对每个行人,数据库包含了从11个视角拍摄的视频(0°,18°,36°,…,180°)。每个视角包括了10个视频。因此每个行人共有110个视频与其对应。
这10个视频里,6个是正常视频(简称为NM,其中4个为gallery,2个为prob),2个穿大衣视频(简称为CL,均为prob),2个带包视频(简称为BG,均为prob)。
该数据库的特点是视角最多,而且包含了不同的行走状态(穿衣与带包)。
OU-ISIR
该数据库[1]共有4007个不同的行人。每个人有2个视频,一个作gallery,一个作prob。总共有四个视角(55°, 65°, 75°, 85°),可能不同人的视角不同。
该数据库的特点是行人身份种类众多,但是每个人的视频的视角、行走状态差别较小。
USF
该数据库[5]共有122个人。每个个体不同的视频有五个不同因素:2种鞋子种类、2种拿东西的状态、2种地面种类、2种视角、2种录制时间。
这五种因素相互排列组合,组成32个视频。
该数据库在室外复杂场景录制,因此GEI更为嘈杂。
Reference
[1] H. Iwama, M. Okumura, Y. Makihara, and Y. Yagi, “The OU-ISIR gait database: Comprising the large population dataset and performance evaluation of gait recognition,” IEEE Trans. Information Forensics and Security, vol. 7(5), pp. 1511–1521, 2012.
[2] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs”, IEEE Trans. Pattern Analysis and Machine Intelligence, 2016.
[3] S. Yu, H. Chen, E.G. Reyes and N. Poh, “GaitGAN: Invariant Gait Feature Extraction Using Generative Adversarial Networks”, in CVPR 2017 Biometrics Workshop, 2017.
[4] S. Yu, D. Tan, and T. Tan. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In ICPR, pages 441–444, August 2006.
[5] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer,“The humanID gait challenge problem: Data sets, performance, and analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
27(2), pp. 162–177, Feb. 2005.
————————————————
版权声明:本文为CSDN博主「KFXW」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u010158659/article/details/77878296
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/166438.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...